
A planet is revolving around the sun in an elliptical orbit, its closest distance from sun is \[{r_{\min }}\], and farthest distance from sun is \[{r_{\max }}\]. If the orbital angular velocity of planet when it is nearest to sun is \[\omega \], then orbital angular velocity at the point when it is at the farthest distance of sun is
A) \[\omega \sqrt {\dfrac{{{r_{\min }}}}{{{r_{\max }}}}} \]
B) \[\omega \sqrt {\dfrac{{{r_{\max }}}}{{{r_{\min }}}}} \]
C) \[\omega {\left( {\dfrac{{{r_{\max }}}}{{{r_{\min }}}}} \right)^2}\]
D) \[\omega {\left( {\dfrac{{{r_{\min }}}}{{{r_{\max }}}}} \right)^2}\]
Answer
232.8k+ views
Hint: As there is no external torque so the angular momentum is conserved, that means \[L = \omega {r^2}\]is constant on all the path of elliptical orbit where is \[\omega \] angular velocity of the way and \[r\] is distance of that point from sun.
Complete step by step answer:
As we are given in question with minimum distance of sun as, \[{r_{\min }}\]
and we are also given with maximum distance as, \[{r_{\max }}\]
and with angular velocity at min. distance as, \[\omega \]
and to find angular velocity at max. distance as, \[{\omega _1}\]
so we know the angular momentum is conserved so we have
\[L = {L_1}\]
\[\omega {{r^2}_{\min }} = {\omega _1}{{r^2}_{\max }}\]
\[{\omega _1} = \dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\]
So we get angular velocity at maximum distance as \[\dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\].
So, The correct option is D.
Additional information:
An important role is played by Johannes Kepler, the physicist who gave us the three laws of planetary motion. The three laws are:
The law of ellipses:
The path of the planets about the sun is elliptical in shape, with the centre of the sun being located at one focus.
The law of equal areas:
An imaginary line drawn from the centre of the sun to the centre of the planet will sweep out equal areas in equal intervals of time.
The Law of Harmonies:
The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun.
It was his second law, the law of equal areas which was further manipulated to find out that the angular momentum remains conserved during the whole planetary motion of a planet around the Sun.
Note: We know \[L = mvr\] and we can substitute \[v = \omega r\] so that we can make the formula \[L = m\omega {r^2}\]and \[m\] is constant and external torque is absent so we can say that angular momentum is constant and can calculate the angular velocity at any point on that path if we know the distance of that point from sun.
Complete step by step answer:
As we are given in question with minimum distance of sun as, \[{r_{\min }}\]
and we are also given with maximum distance as, \[{r_{\max }}\]
and with angular velocity at min. distance as, \[\omega \]
and to find angular velocity at max. distance as, \[{\omega _1}\]
so we know the angular momentum is conserved so we have
\[L = {L_1}\]
\[\omega {{r^2}_{\min }} = {\omega _1}{{r^2}_{\max }}\]
\[{\omega _1} = \dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\]
So we get angular velocity at maximum distance as \[\dfrac{{\omega {{r^2}_{\min }}}}{{{{r^2}_{\max }}}}\].
So, The correct option is D.
Additional information:
An important role is played by Johannes Kepler, the physicist who gave us the three laws of planetary motion. The three laws are:
The law of ellipses:
The path of the planets about the sun is elliptical in shape, with the centre of the sun being located at one focus.
The law of equal areas:
An imaginary line drawn from the centre of the sun to the centre of the planet will sweep out equal areas in equal intervals of time.
The Law of Harmonies:
The ratio of the squares of the periods of any two planets is equal to the ratio of the cubes of their average distances from the sun.
It was his second law, the law of equal areas which was further manipulated to find out that the angular momentum remains conserved during the whole planetary motion of a planet around the Sun.
Note: We know \[L = mvr\] and we can substitute \[v = \omega r\] so that we can make the formula \[L = m\omega {r^2}\]and \[m\] is constant and external torque is absent so we can say that angular momentum is constant and can calculate the angular velocity at any point on that path if we know the distance of that point from sun.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

