
A particular \[100\] octane aviation gasoline used \[{\rm{1}}{\rm{.00}}\,\,{\rm{mL}}\] of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\]of density \[{\rm{1}}{\rm{.66}}\,\,\dfrac{{\rm{g}}}{{{\rm{mL}}}}\]per litre of product. This compound is made as follows:
\[{\rm{4}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\,\,{\rm{ + }}\,\,{\rm{4NaPb}} \to {{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\,\,{\rm{ + }}\,\,{\rm{4NaCl}}\,\,{\rm{ + }}\,\,{\rm{3Pb}}\]
How many grams of ethyl chloride is needed to make enough tetraethyl lead for \[{\rm{1}}\,\,{\rm{L}}\] of gasoline? [Atomic mass of \[{\rm{Pb}}\,\,{\rm{ = }}\,\,{\rm{207}}\]]
Answer
164.1k+ views
Hint: Density of tetraethyllead is required to calculate first followed by the number of moles tetraethyllead. Number of moles of tetraethyllead is calculated by using its molar mass. The molar ratio from the balanced molecular equation is used to find the moles of ethyl chloride and then its mass in grams is calculated with the help of its molar mass.
Complete Step by Step Solution:
Density of a substance is defined as the mass per unit volume.
Mathematically, \[{\rm{density}}\,{\rm{ = }}\,\dfrac{{{\rm{mass}}}}{{{\rm{volume}}}}\]
As per given data,
Volume of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\] \[{\rm{ = }}\,{\rm{1}}{\rm{.00}}\,\,{\rm{mL}}\]
Density of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\] \[{\rm{ = }}\,\,{\rm{1}}{\rm{.66}}\,\,\dfrac{{\rm{g}}}{{{\rm{mL}}}}\]
Find the mass of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\]as shown below:
\[\begin{array}{l}{\rm{density}}\,{\rm{ = }}\,\dfrac{{{\rm{mass}}}}{{{\rm{volume}}}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \,\,{\rm{density}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\,\,{\rm{ \times }}\,\,{\rm{volume}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \,\,{\rm{1}}{\rm{.66}}\,\,\dfrac{{\rm{g}}}{{{\rm{mL}}}} \times {\rm{1}}{\rm{.00}}\,\,{\rm{mL}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \,\,{\rm{1}}{\rm{.66}}\,\,{\rm{g}}\end{array}\]
Molar mass of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\]is known to be \[{\rm{323}}{\rm{.4}}\dfrac{{\rm{g}}}{{{\rm{mol}}}}\]
The relationship between moles (n), mass (m), and molar mass (M) is as shown below:
\[{\rm{moles}}\,{\rm{(n) = }}\dfrac{{{\rm{mass(m)}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}}}\]
Find the moles of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\] as shown below:
\[\begin{array}{l}{\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \dfrac{{{\rm{mass}}\,\,{\rm{(m)}}\,\,{\rm{of}}\,\,{{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}}_{\rm{4}}}{\rm{Pb}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}}_{\rm{4}}}{\rm{Pb}}}}\\ \Rightarrow {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \dfrac{{{\rm{1}}{\rm{.66}}\,\,{\rm{g}}}}{{{\rm{323}}{\rm{.4}}\dfrac{{\rm{g}}}{{{\rm{mol}}}}}}\\ \Rightarrow {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \,\,{\rm{0}}{\rm{.0051}}\,\,{\rm{mol}}\end{array}\]
The balanced molecular equation is given as:
\[{\rm{4}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\,\,{\rm{ + }}\,\,{\rm{4NaPb}} \to {{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\,\,{\rm{ + }}\,\,{\rm{4NaCl}}\,\,{\rm{ + }}\,\,{\rm{3Pb}}\]
From the above equation, it can be seen that \[4\]moles of ethyl chloride, \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\]reacts to form \[{\rm{1}}\]moles of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\].
So, molar ratio of \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\,:{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = 4\,\,:\,\,1\]
Find the moles of ethyl chloride, \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\] from the calculated moles of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\] and their molar ratio as:
\[{\rm{0}}{\rm{.0051}}\,\,{\rm{mol}}\,\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb \times }}\dfrac{{{\rm{4}}\,\,{\rm{mol}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}}}{{{\rm{1}}\,\,{\rm{mol}}\,\,{{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}}_{\rm{4}}}{\rm{Pb}}}}\\ = \,0.0204\,\,{\rm{mol}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\]
Molar mass of ethyl chloride, \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\] is known to be \[{\rm{64}}{\rm{.51}}\dfrac{{\rm{g}}}{{{\rm{mol}}}}\]
Lastly, find the mass of ethyl chloride, \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\] from its calculated moles by using the molar mass as:
\[\begin{array}{l}{\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\, = \dfrac{{{\rm{mass}}\,\,{\rm{(m)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\,}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\,}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{(m)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}} = {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}} \times {\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{(m)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}} = \,0.0204\,\,{\rm{mol}} \times {\rm{64}}{\rm{.51}}\dfrac{{\rm{g}}}{{{\rm{mol}}}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{(m)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}} = \,1.32\,\,{\rm{g}}\end{array}\]
Hence, the mass of ethyl chloride, \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\] is found to be \[1.32\,\,{\rm{g}}\]
Therefore, the answer is \[\,1.32\,\,{\rm{g}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\]
Note: The calculation of relative amounts of substances in chemical reactions is known as stoichiometry (derived from the Greek stoicheion meaning element and meterin meaning measures). The key to weight relationship in chemical change is the mole concept. Coefficients placed in front of formulae in a balanced chemical equation represent the ratio by moles in which substances are consumed and produced by the chemical change. Since the mass of a mole of a substance is directly related to its formula or molecular weight, a balanced chemical equation represents a ratio by weight also.
Complete Step by Step Solution:
Density of a substance is defined as the mass per unit volume.
Mathematically, \[{\rm{density}}\,{\rm{ = }}\,\dfrac{{{\rm{mass}}}}{{{\rm{volume}}}}\]
As per given data,
Volume of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\] \[{\rm{ = }}\,{\rm{1}}{\rm{.00}}\,\,{\rm{mL}}\]
Density of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\] \[{\rm{ = }}\,\,{\rm{1}}{\rm{.66}}\,\,\dfrac{{\rm{g}}}{{{\rm{mL}}}}\]
Find the mass of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\]as shown below:
\[\begin{array}{l}{\rm{density}}\,{\rm{ = }}\,\dfrac{{{\rm{mass}}}}{{{\rm{volume}}}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \,\,{\rm{density}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\,\,{\rm{ \times }}\,\,{\rm{volume}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \,\,{\rm{1}}{\rm{.66}}\,\,\dfrac{{\rm{g}}}{{{\rm{mL}}}} \times {\rm{1}}{\rm{.00}}\,\,{\rm{mL}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \,\,{\rm{1}}{\rm{.66}}\,\,{\rm{g}}\end{array}\]
Molar mass of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\]is known to be \[{\rm{323}}{\rm{.4}}\dfrac{{\rm{g}}}{{{\rm{mol}}}}\]
The relationship between moles (n), mass (m), and molar mass (M) is as shown below:
\[{\rm{moles}}\,{\rm{(n) = }}\dfrac{{{\rm{mass(m)}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}}}\]
Find the moles of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\] as shown below:
\[\begin{array}{l}{\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \dfrac{{{\rm{mass}}\,\,{\rm{(m)}}\,\,{\rm{of}}\,\,{{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}}_{\rm{4}}}{\rm{Pb}}}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}}_{\rm{4}}}{\rm{Pb}}}}\\ \Rightarrow {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \dfrac{{{\rm{1}}{\rm{.66}}\,\,{\rm{g}}}}{{{\rm{323}}{\rm{.4}}\dfrac{{\rm{g}}}{{{\rm{mol}}}}}}\\ \Rightarrow {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = \,\,{\rm{0}}{\rm{.0051}}\,\,{\rm{mol}}\end{array}\]
The balanced molecular equation is given as:
\[{\rm{4}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\,\,{\rm{ + }}\,\,{\rm{4NaPb}} \to {{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\,\,{\rm{ + }}\,\,{\rm{4NaCl}}\,\,{\rm{ + }}\,\,{\rm{3Pb}}\]
From the above equation, it can be seen that \[4\]moles of ethyl chloride, \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\]reacts to form \[{\rm{1}}\]moles of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\].
So, molar ratio of \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\,:{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}} = 4\,\,:\,\,1\]
Find the moles of ethyl chloride, \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\] from the calculated moles of tetraethyllead, \[{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb}}\] and their molar ratio as:
\[{\rm{0}}{\rm{.0051}}\,\,{\rm{mol}}\,\,\,{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}_{\rm{4}}}{\rm{Pb \times }}\dfrac{{{\rm{4}}\,\,{\rm{mol}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}}}{{{\rm{1}}\,\,{\rm{mol}}\,\,{{{\rm{(}}{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}{\rm{)}}}_{\rm{4}}}{\rm{Pb}}}}\\ = \,0.0204\,\,{\rm{mol}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\]
Molar mass of ethyl chloride, \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\] is known to be \[{\rm{64}}{\rm{.51}}\dfrac{{\rm{g}}}{{{\rm{mol}}}}\]
Lastly, find the mass of ethyl chloride, \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\] from its calculated moles by using the molar mass as:
\[\begin{array}{l}{\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\, = \dfrac{{{\rm{mass}}\,\,{\rm{(m)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\,}}{{{\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\,}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{(m)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}} = {\rm{moles}}\,{\rm{(n)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}} \times {\rm{molar}}\,\,{\rm{mass}}\,\,{\rm{(M)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{(m)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}} = \,0.0204\,\,{\rm{mol}} \times {\rm{64}}{\rm{.51}}\dfrac{{\rm{g}}}{{{\rm{mol}}}}\\ \Rightarrow {\rm{mass}}\,\,{\rm{(m)}}\,\,{\rm{of}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}} = \,1.32\,\,{\rm{g}}\end{array}\]
Hence, the mass of ethyl chloride, \[{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\] is found to be \[1.32\,\,{\rm{g}}\]
Therefore, the answer is \[\,1.32\,\,{\rm{g}}\,\,{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{Cl}}\]
Note: The calculation of relative amounts of substances in chemical reactions is known as stoichiometry (derived from the Greek stoicheion meaning element and meterin meaning measures). The key to weight relationship in chemical change is the mole concept. Coefficients placed in front of formulae in a balanced chemical equation represent the ratio by moles in which substances are consumed and produced by the chemical change. Since the mass of a mole of a substance is directly related to its formula or molecular weight, a balanced chemical equation represents a ratio by weight also.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Thermodynamics Class 11 Notes: CBSE Chapter 5

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
