
A particle moving in a magnetic field increases its velocity, then its radius of the circle
A. Decreases
B. Increases
C. Remains the same
D. Becomes half
Answer
162.9k+ views
Hint: When a charged particle enters into a region of magnetic field of uniform magnetic field strength then due to magnetic field interaction with moving charge there is magnetic force applied on the moving charge. The magnetic force is given by Lorentz's law of force.
Formula used:
\[r = \dfrac{{mv}}{{Bq}}\], here r is the radius of the circular path when a charged particle of mass m and charge q enters into a region of magnetic field strength B with speed v.
Complete answer:
Let the mass of the particle is m and the charge is q.
If the magnetic field strength in the region is B then the magnetic force acting on the particle is,
\[\vec F = q\left( {\vec v \times \vec B} \right)\]
The vertical component of the magnetic force will cause the path of the motion of the charged particle as circular.
The deflection of the particle will be in the direction of the magnetic force and hence the magnetic force will act as centripetal force.
If the speed of the particle is v, then the centrifugal force will be,
\[{F_C} = \dfrac{{m{v^2}}}{r}\], here r is the radius of the circular path.
At radial equilibrium state, the outward force is equal to the inward centripetal force,
\[\dfrac{{m{v^2}}}{r} = qvB\]
\[r = \dfrac{{mv}}{{Bq}}\]
So, the radius of the circular path is proportional to the speed of the particle.
Hence, when we increase the speed of the particle then the radius of the particle will also increase.
Therefore, the correct option is (B).
Note:The radius of the circular path depends on the speed of the particle and not the velocity, so keeping the magnitude of the velocity constant changing the direction will not have any effect on the radius of the circular path.
Formula used:
\[r = \dfrac{{mv}}{{Bq}}\], here r is the radius of the circular path when a charged particle of mass m and charge q enters into a region of magnetic field strength B with speed v.
Complete answer:
Let the mass of the particle is m and the charge is q.
If the magnetic field strength in the region is B then the magnetic force acting on the particle is,
\[\vec F = q\left( {\vec v \times \vec B} \right)\]
The vertical component of the magnetic force will cause the path of the motion of the charged particle as circular.
The deflection of the particle will be in the direction of the magnetic force and hence the magnetic force will act as centripetal force.
If the speed of the particle is v, then the centrifugal force will be,
\[{F_C} = \dfrac{{m{v^2}}}{r}\], here r is the radius of the circular path.
At radial equilibrium state, the outward force is equal to the inward centripetal force,
\[\dfrac{{m{v^2}}}{r} = qvB\]
\[r = \dfrac{{mv}}{{Bq}}\]
So, the radius of the circular path is proportional to the speed of the particle.
Hence, when we increase the speed of the particle then the radius of the particle will also increase.
Therefore, the correct option is (B).
Note:The radius of the circular path depends on the speed of the particle and not the velocity, so keeping the magnitude of the velocity constant changing the direction will not have any effect on the radius of the circular path.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
Three mediums of refractive indices mu 1mu 0 and mu class 12 physics JEE_Main

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
