
A particle is resting over a smooth horizontal floor. At $t = 0$, a horizontal force starts acting on it. Magnitude of the force increases with time according to law $F = \alpha t$, where $\alpha $ is a positive constant. From the figure, which of the following statements is(are) correct?

(A) Curve $1$ shows acceleration against time
(B) Curve $2$ shows velocity against time
(C) Curve $2$ shows velocity against acceleration
(D) None of these
Answer
161.7k+ views
Hint:In order to solve this question, we will compare force formulas in terms of acceleration and given form to find relation between acceleration and time and then using integration we will find velocity relation with time and determine the nature of the curve between these variables.
Formula used:
The acceleration is written in derivative form as $a = \dfrac{{dv}}{{dt}}$ and $v = \dfrac{{dx}}{{dt}}$ where v is velocity, dx is change in displacement of the body and ‘dt’ is change in time.
Complete answer:
According to the question, we have given that force is increasing with time with the relation $F = \alpha t$ and as we know from newton’s second law of motion that force is given by $F = ma$ where m is mass and a is acceleration of the body so, comparing both the values of force we get,
$ma = \alpha t$ since, m and $\alpha $ are both positive constants so, we see that acceleration is directly proportional to the time as $a \propto t$ so, Curve $1$ which is a straight line represents acceleration against time.
So, Options (A) is the correct answer
Now, as we have, $a \propto t$ we can write for some constant it as $a = kt$ and we know the derivative form of acceleration in terms of velocity ‘dv’ and time ‘dt’ as $a = \dfrac{{dv}}{{dt}}$ so we get,
$\dfrac{{dv}}{{dt}} = kt$
Now, integrating both sides we get,
$\int {dv} = k\int {tdt} $
using integration formula $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
$ \Rightarrow v = \dfrac{{k{t^2}}}{2}$
so, velocity is directly proportional to square of time as $v \propto {t^2}$ whose graph will be a curved path like a parabola as shown in the given graph in curve $2$, so Curve $2$ represent the velocity against time.
So, Option (B) is the correct answer.
Hence, the correct options are Option (A) and (B).
Note:While solving such questions, always remember the nature of basic curves like straight lines, parabola and elliptical curves and also remember the integration formulas and derivative forms of acceleration and velocity to solve such questions efficiently.
Formula used:
The acceleration is written in derivative form as $a = \dfrac{{dv}}{{dt}}$ and $v = \dfrac{{dx}}{{dt}}$ where v is velocity, dx is change in displacement of the body and ‘dt’ is change in time.
Complete answer:
According to the question, we have given that force is increasing with time with the relation $F = \alpha t$ and as we know from newton’s second law of motion that force is given by $F = ma$ where m is mass and a is acceleration of the body so, comparing both the values of force we get,
$ma = \alpha t$ since, m and $\alpha $ are both positive constants so, we see that acceleration is directly proportional to the time as $a \propto t$ so, Curve $1$ which is a straight line represents acceleration against time.
So, Options (A) is the correct answer
Now, as we have, $a \propto t$ we can write for some constant it as $a = kt$ and we know the derivative form of acceleration in terms of velocity ‘dv’ and time ‘dt’ as $a = \dfrac{{dv}}{{dt}}$ so we get,
$\dfrac{{dv}}{{dt}} = kt$
Now, integrating both sides we get,
$\int {dv} = k\int {tdt} $
using integration formula $\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} $
$ \Rightarrow v = \dfrac{{k{t^2}}}{2}$
so, velocity is directly proportional to square of time as $v \propto {t^2}$ whose graph will be a curved path like a parabola as shown in the given graph in curve $2$, so Curve $2$ represent the velocity against time.
So, Option (B) is the correct answer.
Hence, the correct options are Option (A) and (B).
Note:While solving such questions, always remember the nature of basic curves like straight lines, parabola and elliptical curves and also remember the integration formulas and derivative forms of acceleration and velocity to solve such questions efficiently.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Class 11 JEE Main Physics Mock Test 2025

Differentiate between audible and inaudible sounds class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
