
A particle is moving unidirectionally on a horizontal plane under the action of a constant power-supplying energy source. Which of the following graphs accurately represents the motion of the particle in the displacement (s) – time (t) graph? (Graphs are drawn schematically and are not to scale)
A. 
B. 
C. 
D.
Answer
163.5k+ views
Hint:Before solving this problem let’s understand the term displacement. When a force is applied, the object changes its position which is known as displacement. Since it is a vector quantity it has both direction and magnitude. The power supplied to the particle is the product of the force applied and the velocity at which it travels.
Formula Used:
The power supplied to the particle is,
\[P = FV\]
Where, F is force applied and V is velocity.
Complete step by step solution:
Consider a particle that is moving in one direction on a horizontal plane under the action of a constant power-supplying energy source. We need to find which of the following graphs accurately represents the motion of the particle in the displacement- time graph. We know that the power supplied to the particle is,
\[P = FV\]
We know that, \[F = m\dfrac{{dV}}{{dt}}\]
\[P = m\dfrac{{dV}}{{dt}} \times V\]
\[\Rightarrow VdV = \dfrac{P}{m}dt\]
On integrating we get the expression for V
\[\dfrac{{{V^2}}}{2} = \dfrac{P}{m}t\]
This clearly says that,
\[{V^2} \propto t\] or \[V \propto {t^{\dfrac{1}{2}}}\]
Here, velocity is,
\[V = \dfrac{\text{displacement}}{\text{time}}\]
\[ \Rightarrow V = \dfrac{S}{t}\]
Then,
\[\dfrac{S}{t} \propto {t^{\dfrac{1}{2}}}\]
\[\therefore S \propto {t^{\dfrac{3}{2}}}\]
Therefore, we represent this equation in the displacement time graph as shown in option B.
Hence, Option B is the correct answer.
Note:The displacement-time graphs show how the displacement of a moving object changes with time. If a displacement-time graph is a sloping line then it shows that the object is moving. In this graph, the slope or gradient of the line is equal to the velocity of the object.
Formula Used:
The power supplied to the particle is,
\[P = FV\]
Where, F is force applied and V is velocity.
Complete step by step solution:
Consider a particle that is moving in one direction on a horizontal plane under the action of a constant power-supplying energy source. We need to find which of the following graphs accurately represents the motion of the particle in the displacement- time graph. We know that the power supplied to the particle is,
\[P = FV\]
We know that, \[F = m\dfrac{{dV}}{{dt}}\]
\[P = m\dfrac{{dV}}{{dt}} \times V\]
\[\Rightarrow VdV = \dfrac{P}{m}dt\]
On integrating we get the expression for V
\[\dfrac{{{V^2}}}{2} = \dfrac{P}{m}t\]
This clearly says that,
\[{V^2} \propto t\] or \[V \propto {t^{\dfrac{1}{2}}}\]
Here, velocity is,
\[V = \dfrac{\text{displacement}}{\text{time}}\]
\[ \Rightarrow V = \dfrac{S}{t}\]
Then,
\[\dfrac{S}{t} \propto {t^{\dfrac{1}{2}}}\]
\[\therefore S \propto {t^{\dfrac{3}{2}}}\]
Therefore, we represent this equation in the displacement time graph as shown in option B.
Hence, Option B is the correct answer.
Note:The displacement-time graphs show how the displacement of a moving object changes with time. If a displacement-time graph is a sloping line then it shows that the object is moving. In this graph, the slope or gradient of the line is equal to the velocity of the object.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

In which of the following forms the energy is stored class 12 physics JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Other Pages
Three mediums of refractive indices mu 1mu 0 and mu class 12 physics JEE_Main

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?
