
When a metal surface is illuminated by light of wavelengths \[400{\rm{ nm \,and\,250 nm}}\], the maximum velocities of the photoelectrons ejected are v and 2v respectively. The work function of the metal is (h=Planck’s constant, c=velocity of Light in air).
A. \[2{\rm{ hc}} \times {\rm{1}}{{\rm{0}}^6}J\]
B. \[{\rm{1}}{\rm{.5 hc}} \times {\rm{1}}{{\rm{0}}^6}J\]
C. \[{\rm{hc}} \times {\rm{1}}{{\rm{0}}^6}J\]
D. \[{\rm{0}}{\rm{.5 hc}} \times {\rm{1}}{{\rm{0}}^6}J\]
Answer
163.8k+ views
Hint: The total energy of a photon is equal to the sum of the energy utilized to eject an electron and the maximum kinetic energy of electrons. By using this work function can be obtained.
Formula used:
The energy of the photon is given by the equation is given as:
\[E = h\upsilon = \dfrac{{hc}}{\lambda }\].
Where, \[h\] is the Plank constant, \[\upsilon \] is the frequency of incident light, c is the speed of light and \[\lambda \] is the wavelength.
Kinetic energy of photoelectrons is given as:
\[KE = E - \phi \]
Where E is the energy and \[\phi \] is the work function.
Also Kinetic energy is given as \[KE = \dfrac{1}{2}m{v^2}\]
Where m is the mass and v is the velocity.
Complete step by step solution:
As we know \[KE = \dfrac{{hc}}{\lambda } - \phi \]
For the maximum velocities of the photoelectrons ejected are v,
\[\dfrac{1}{2}m{v^2} = \dfrac{{hc}}{{{\lambda _1}}} - \phi \] ……. (1)
For the maximum velocities of the photoelectrons ejected are 2v,
\[\dfrac{1}{2}m{(2v)^2} = \dfrac{{hc}}{{{\lambda _2}}} - \phi \]
\[\Rightarrow \dfrac{1}{2}m(4{v^2}) = \dfrac{{hc}}{{{\lambda _2}}} - \phi \]
\[\Rightarrow {\rm{ 4}}\left( {\dfrac{1}{2}m{v^2}} \right) = \dfrac{{hc}}{{{\lambda _2}}} - \phi \]
Put equation (1) in above equation,
\[{\rm{4}}\left( {\dfrac{{hc}}{{{\lambda _1}}} - \phi } \right) = \dfrac{{hc}}{{{\lambda _2}}} - \phi \]
\[\Rightarrow \dfrac{{4hc}}{{{\lambda _1}}} - \dfrac{{hc}}{{{\lambda _2}}} = 4\phi - \phi \\
\Rightarrow {\rm{ }}\phi {\rm{ = }}\dfrac{1}{3}\left( {\dfrac{{4hc}}{{{\lambda _1}}} - \dfrac{{hc}}{{{\lambda _2}}}} \right)nm\\
\Rightarrow {\rm{ }}\phi {\rm{ = }}\dfrac{{hc}}{3}\left( {\dfrac{4}{{{\lambda _1}}} - \dfrac{1}{{{\lambda _2}}}} \right) \times {10^9}m\]
Substituting the values
\[\Rightarrow {\rm{ }}\phi {\rm{ = }}\dfrac{{hc}}{3}\left( {\dfrac{4}{{{\lambda _1}}} - \dfrac{1}{{{\lambda _2}}}} \right) \times {10^9}\\
\Rightarrow {\rm{ }}\phi {\rm{ = }}\dfrac{{hc}}{3}\left( {\dfrac{4}{{400}} - \dfrac{1}{{250}}} \right) \times {10^9}\\
\Rightarrow {\rm{ }}\phi {\rm{ = }}\dfrac{{hc}}{{500}} \times {10^9}\\
\therefore {\rm{ }}\phi {\rm{ = }} 2{\rm{ hc}} \times {\rm{1}}{{\rm{0}}^6}J\]
Therefore, the work function of the metal is \[2{\rm{ hc}} \times {10^6}J\].
Hence option A is the correct answer.
Note: The photoelectric effect occurs when electrons are released from a metal surface when sufficient frequency light is impressed on it. Einstein proposed that light acted like a particle, with each particle containing energy known as a photon. The energy of a wave is proportional to its amplitude, according to wave physics.
Formula used:
The energy of the photon is given by the equation is given as:
\[E = h\upsilon = \dfrac{{hc}}{\lambda }\].
Where, \[h\] is the Plank constant, \[\upsilon \] is the frequency of incident light, c is the speed of light and \[\lambda \] is the wavelength.
Kinetic energy of photoelectrons is given as:
\[KE = E - \phi \]
Where E is the energy and \[\phi \] is the work function.
Also Kinetic energy is given as \[KE = \dfrac{1}{2}m{v^2}\]
Where m is the mass and v is the velocity.
Complete step by step solution:
As we know \[KE = \dfrac{{hc}}{\lambda } - \phi \]
For the maximum velocities of the photoelectrons ejected are v,
\[\dfrac{1}{2}m{v^2} = \dfrac{{hc}}{{{\lambda _1}}} - \phi \] ……. (1)
For the maximum velocities of the photoelectrons ejected are 2v,
\[\dfrac{1}{2}m{(2v)^2} = \dfrac{{hc}}{{{\lambda _2}}} - \phi \]
\[\Rightarrow \dfrac{1}{2}m(4{v^2}) = \dfrac{{hc}}{{{\lambda _2}}} - \phi \]
\[\Rightarrow {\rm{ 4}}\left( {\dfrac{1}{2}m{v^2}} \right) = \dfrac{{hc}}{{{\lambda _2}}} - \phi \]
Put equation (1) in above equation,
\[{\rm{4}}\left( {\dfrac{{hc}}{{{\lambda _1}}} - \phi } \right) = \dfrac{{hc}}{{{\lambda _2}}} - \phi \]
\[\Rightarrow \dfrac{{4hc}}{{{\lambda _1}}} - \dfrac{{hc}}{{{\lambda _2}}} = 4\phi - \phi \\
\Rightarrow {\rm{ }}\phi {\rm{ = }}\dfrac{1}{3}\left( {\dfrac{{4hc}}{{{\lambda _1}}} - \dfrac{{hc}}{{{\lambda _2}}}} \right)nm\\
\Rightarrow {\rm{ }}\phi {\rm{ = }}\dfrac{{hc}}{3}\left( {\dfrac{4}{{{\lambda _1}}} - \dfrac{1}{{{\lambda _2}}}} \right) \times {10^9}m\]
Substituting the values
\[\Rightarrow {\rm{ }}\phi {\rm{ = }}\dfrac{{hc}}{3}\left( {\dfrac{4}{{{\lambda _1}}} - \dfrac{1}{{{\lambda _2}}}} \right) \times {10^9}\\
\Rightarrow {\rm{ }}\phi {\rm{ = }}\dfrac{{hc}}{3}\left( {\dfrac{4}{{400}} - \dfrac{1}{{250}}} \right) \times {10^9}\\
\Rightarrow {\rm{ }}\phi {\rm{ = }}\dfrac{{hc}}{{500}} \times {10^9}\\
\therefore {\rm{ }}\phi {\rm{ = }} 2{\rm{ hc}} \times {\rm{1}}{{\rm{0}}^6}J\]
Therefore, the work function of the metal is \[2{\rm{ hc}} \times {10^6}J\].
Hence option A is the correct answer.
Note: The photoelectric effect occurs when electrons are released from a metal surface when sufficient frequency light is impressed on it. Einstein proposed that light acted like a particle, with each particle containing energy known as a photon. The energy of a wave is proportional to its amplitude, according to wave physics.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Charging and Discharging of Capacitor
