
A massless equilateral triangle EFG of side ‘a’ (As shown in figure) has three particles of mass m situated at its vertices. The moment of inertia of the system about each line EX perpendicular to EG in the plane of EFG is (N/20) ma2 where N is an integer. The value of N is _____.

Answer
162.9k+ views
Hint:The Parallel axis theorem determines the moment of inertia of anybody about an axis which is parallel to the body passing through its centre is equal to the sum of moment of inertia of any given body about the axis which is passing through the middle and the product of the mass of the body times the square of the distance between the two axes.
Formula used:
Parallel axis theorem is given as,
\[I = {I_C} + M{h^2}\]
Where, I is the moment of inertia of the given body, \[{I_C}\] is the moment of inertia about the centre, M is the mass and h is the distance.
Complete step by step solution:
The mass of a particle situated at the vertex is ‘m’.
Moment of inertia of the system, I=(N/20) $ma^2$

Image: moment of inertia of the system about the line EX
According to the parallel axis theorem,
I=moment of inertia of triangle along the medium + \[m{a^2}\]
\[I = m{\left( {\dfrac{a}{2}} \right)^2} + m{a^2}\]
Substituting the given value of moment of inertia of the system, we have
\[\dfrac{N}{{20}}m{a^2} = m{\left( {\dfrac{a}{2}} \right)^2} + m{a^2}\]
\[\Rightarrow \dfrac{N}{{20}}m{a^2} = \dfrac{{m{a^2}}}{4} + m{a^2}\]
\[\Rightarrow \dfrac{N}{{20}}m{a^2} = \dfrac{5}{4}m{a^2}\]
\[\therefore N = 25\]
Therefore, the value of N is 25.
Note: Parallel axis theorem and perpendicular axis theorems both are used in conjunction to find the moment of inertia of a given rigid body about any axis. Both the theorems can be used to determine the moment of inertia of an object that is in rotational motion.
Formula used:
Parallel axis theorem is given as,
\[I = {I_C} + M{h^2}\]
Where, I is the moment of inertia of the given body, \[{I_C}\] is the moment of inertia about the centre, M is the mass and h is the distance.
Complete step by step solution:
The mass of a particle situated at the vertex is ‘m’.
Moment of inertia of the system, I=(N/20) $ma^2$

Image: moment of inertia of the system about the line EX
According to the parallel axis theorem,
I=moment of inertia of triangle along the medium + \[m{a^2}\]
\[I = m{\left( {\dfrac{a}{2}} \right)^2} + m{a^2}\]
Substituting the given value of moment of inertia of the system, we have
\[\dfrac{N}{{20}}m{a^2} = m{\left( {\dfrac{a}{2}} \right)^2} + m{a^2}\]
\[\Rightarrow \dfrac{N}{{20}}m{a^2} = \dfrac{{m{a^2}}}{4} + m{a^2}\]
\[\Rightarrow \dfrac{N}{{20}}m{a^2} = \dfrac{5}{4}m{a^2}\]
\[\therefore N = 25\]
Therefore, the value of N is 25.
Note: Parallel axis theorem and perpendicular axis theorems both are used in conjunction to find the moment of inertia of a given rigid body about any axis. Both the theorems can be used to determine the moment of inertia of an object that is in rotational motion.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
