
A long spring is stretched by $2cm$ and its potential energy is $U$. If the spring is stretched by $10cm$ ; its potential energy will be:
A) $U/5$
B) $U/25$
C) $5U$
D) $25U$
Answer
206.1k+ views
Hint: First, calculate the value of the spring constant using the formula for energy in a spring by putting the given values, i.e. $x = 2$ and $PE = U$ . Then use the same formula by putting $x = 10cm$ and spring constant as calculated previously to get the value of final potential energy. This will be our final answer.
Formula Used:
Potential energy in a spring, $PE = \dfrac{1}{2}k{x^2}$
Where, $k$ is the spring constant of the spring and $x$ the distance by which the string has been stretched, or extended.
Complete step by step solution:
First, we will use the formula for energy in a spring and put $x = 2$ , as given to get the value of spring constant $k$ . Once we find the value of $k$ we will move on to find the potential energy of the spring when it is stretched by $10cm$ , which will be the final answer.
We have, potential energy in a spring, $PE = \dfrac{1}{2}k{x^2}$
Where, $k$ is the spring constant of the spring and $x$ the distance by which the string has been stretched.
For $x = 2$ and $PE = U$ (given) we get $U = \dfrac{1}{2}k{(2)^2}$
$ \Rightarrow k = \dfrac{{2U}}{4} = \dfrac{U}{2}$
Now we will use this value of spring constant in the formula of potential energy of the spring with $x = 10cm$ to calculate the potential energy of spring in this case.
Therefore, we get $PE = \dfrac{1}{2} \times \dfrac{U}{2} \times {(10)^2}$
On simplifying, we are left with $PE = \dfrac{U}{4} \times 100$
Which gives, $PE = 25U$
Hence, option D is the correct answer.
Note: In questions like these, make sure both the values of extension of spring are given with the same unit. If the units are different, make sure you convert the given values into the same unit before using the values in an answer. Otherwise, you may end up getting the wrong answer. A spring stores energy as potential energy and releases the stored energy as kinetic energy. The kinetic energy released is proportional to the square of the length by which the spring is compressed or stressed. Thus, the potential energy is also directly proportional to the square of the length by which the spring is compressed or stressed.
Formula Used:
Potential energy in a spring, $PE = \dfrac{1}{2}k{x^2}$
Where, $k$ is the spring constant of the spring and $x$ the distance by which the string has been stretched, or extended.
Complete step by step solution:
First, we will use the formula for energy in a spring and put $x = 2$ , as given to get the value of spring constant $k$ . Once we find the value of $k$ we will move on to find the potential energy of the spring when it is stretched by $10cm$ , which will be the final answer.
We have, potential energy in a spring, $PE = \dfrac{1}{2}k{x^2}$
Where, $k$ is the spring constant of the spring and $x$ the distance by which the string has been stretched.
For $x = 2$ and $PE = U$ (given) we get $U = \dfrac{1}{2}k{(2)^2}$
$ \Rightarrow k = \dfrac{{2U}}{4} = \dfrac{U}{2}$
Now we will use this value of spring constant in the formula of potential energy of the spring with $x = 10cm$ to calculate the potential energy of spring in this case.
Therefore, we get $PE = \dfrac{1}{2} \times \dfrac{U}{2} \times {(10)^2}$
On simplifying, we are left with $PE = \dfrac{U}{4} \times 100$
Which gives, $PE = 25U$
Hence, option D is the correct answer.
Note: In questions like these, make sure both the values of extension of spring are given with the same unit. If the units are different, make sure you convert the given values into the same unit before using the values in an answer. Otherwise, you may end up getting the wrong answer. A spring stores energy as potential energy and releases the stored energy as kinetic energy. The kinetic energy released is proportional to the square of the length by which the spring is compressed or stressed. Thus, the potential energy is also directly proportional to the square of the length by which the spring is compressed or stressed.
Recently Updated Pages
JEE Mains Correction Window 2026- Session 1 and 2 Dates, Form Edit Link, Fee

Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

Trending doubts
Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Average and RMS Value in Physics: Formula, Comparison & Application

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Geostationary and Geosynchronous Satellites Explained

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor Explained

NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter - 2025-26

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

