Answer
Verified
107.1k+ views
Hint: A fuse is basically a piece of wire that is used for safety purposes in a circuit. This wire is made up of a material with a high resistance and a very low melting point. It protects the circuit from short circuit or damage.
Complete step by step solution:
Step I:
As it is said that fuse wire has a high resistance, therefore when a large current flows through the wire it heats up and breaks the circuit. This protects the circuit.
Step II:
Given there are two fuse wires used.
Let ${l_1}$ be the length and ${r_1}$ be the radius of the first fuse wire.
Let ${l_2}$ be the length and ${r_2}$ be the radius of the second fuse wire.
For a fuse wire, the current ‘I’ flowing varies directly with the radius ‘r’ of the wire.
It can be written as
$I \propto {(r)^{3/2}}$
Step III:
Let ${I_1}$ be the current flowing in the first wire and ${I_2}$ be the current flowing in the second wire.
Given
${I_1} = 3A$
${I_2} = ?$
${d_1} = 0.4mm$
${r_1} = \dfrac{{0.4}}{2} = 0.2mm$
${d_2} = 0.6mm$
${r_2} = \dfrac{{0.6}}{2} = 0.3mm$
Step IV:
The current through the second wire can be calculated by taking the ratio of both the currents.
\[\dfrac{{{I_1}}}{{{I_2}}} = {(\dfrac{{{r_1}}}{{{r_2}}})^{3/2}}\]
Substituting the values and solving,
$\Rightarrow$ $\dfrac{3}{{{I_2}}} = {(\dfrac{{0.2}}{{0.3}})^{3/2}}$
$\Rightarrow$ ${I_2} = {(\dfrac{3}{2})^{3/2}}.3$
$\Rightarrow$ ${I_2} = 3{(\dfrac{3}{2})^{3/2}}A$
Step V:
The current flowing through the wire if diameter $0.6mm$ will be $3.{(\dfrac{3}{2})^{3/2}}$
Option C is the right answer.
Note: It is to be noted that the current flowing through the wire can vary according to length, radius and resistance of the material used in the wire. All since the energy is always conserved, therefore it changes its form from electrical energy to heat energy. When electrons move, some current reflects in the form of heat. It is also a type of energy.
Complete step by step solution:
Step I:
As it is said that fuse wire has a high resistance, therefore when a large current flows through the wire it heats up and breaks the circuit. This protects the circuit.
Step II:
Given there are two fuse wires used.
Let ${l_1}$ be the length and ${r_1}$ be the radius of the first fuse wire.
Let ${l_2}$ be the length and ${r_2}$ be the radius of the second fuse wire.
For a fuse wire, the current ‘I’ flowing varies directly with the radius ‘r’ of the wire.
It can be written as
$I \propto {(r)^{3/2}}$
Step III:
Let ${I_1}$ be the current flowing in the first wire and ${I_2}$ be the current flowing in the second wire.
Given
${I_1} = 3A$
${I_2} = ?$
${d_1} = 0.4mm$
${r_1} = \dfrac{{0.4}}{2} = 0.2mm$
${d_2} = 0.6mm$
${r_2} = \dfrac{{0.6}}{2} = 0.3mm$
Step IV:
The current through the second wire can be calculated by taking the ratio of both the currents.
\[\dfrac{{{I_1}}}{{{I_2}}} = {(\dfrac{{{r_1}}}{{{r_2}}})^{3/2}}\]
Substituting the values and solving,
$\Rightarrow$ $\dfrac{3}{{{I_2}}} = {(\dfrac{{0.2}}{{0.3}})^{3/2}}$
$\Rightarrow$ ${I_2} = {(\dfrac{3}{2})^{3/2}}.3$
$\Rightarrow$ ${I_2} = 3{(\dfrac{3}{2})^{3/2}}A$
Step V:
The current flowing through the wire if diameter $0.6mm$ will be $3.{(\dfrac{3}{2})^{3/2}}$
Option C is the right answer.
Note: It is to be noted that the current flowing through the wire can vary according to length, radius and resistance of the material used in the wire. All since the energy is always conserved, therefore it changes its form from electrical energy to heat energy. When electrons move, some current reflects in the form of heat. It is also a type of energy.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main