
A force \[{\mathbf{F}}{\text{ }} = {\text{ }}\left( {{\mathbf{i}}{\text{ }} + {\text{ }}{\mathbf{2j}}{\text{ }} + {\text{ }}{\mathbf{3k}}} \right)\]N acts at a point \[\left( {{\mathbf{4i}}{\text{ }} + {\text{ }}{\mathbf{3j}}{\text{ }}-{\text{ }}{\mathbf{k}}} \right)\] m. Then the magnitude of torque about the point \[\left( {{\mathbf{i}}{\text{ }} + {\text{ }}{\mathbf{2j}}{\text{ }} + {\text{ }}{\mathbf{k}}} \right)\] m will be \[\sqrt x \] N – m. The value of \[x\] is ?
Answer
218.4k+ views
Hint: In this question, we need to find the value of \[x\]. As we know that, the torque is the cross product of radius and force. So, we will find the radius vector first using the points \[\left( {{\mathbf{4i}}{\text{ }} + {\text{ }}{\mathbf{3j}}{\text{ }}-{\text{ }}{\mathbf{k}}} \right)\] and \[\left( {{\mathbf{i}}{\text{ }} + {\text{ }}{\mathbf{2j}}{\text{ }} + {\text{ }}{\mathbf{k}}} \right)\]. After, we will take the cross product and will find the magnitude of the resultant vector.
Formula used: The formula for torque in the form of vector notation is given below.
\[\tau = r \times F\]
Here, \[\tau \] is the torque, \[r\] is the radius and \[F\] is the force.
Now, the cross of product of any two vectors such as \[A\left( {{a_1},{a_2},{a_3}} \right)\] and \[B\left( {{b_1},{b_2},{b_3}} \right)\]
So, \[A \times B = \left| {\begin{array}{*{20}{c}} i&j&k \\ {{a_1}}&{{a_2}}&{{a_3}} \\ {{b_1}}&{{b_2}}&{{b_3}} \end{array}} \right| = i\left( {{a_2}{b_3} - {a_3}{b_2}} \right) - j\left( {{a_1}{b_3} - {a_3}{b_1}} \right) + k\left( {{a_1}{b_2} - {a_2}{b_1}} \right)\]
Also, the magnitude of vector \[\left( {m{\mathbf{i}}{\text{ }} + {\text{ n}}{\mathbf{j}}{\text{ }} + {\text{ q}}{\mathbf{k}}} \right)\] is given below.
\[\left| {\left( {m{\mathbf{i}}{\text{ }} + {\text{ n}}{\mathbf{j}}{\text{ }} + {\text{ q}}{\mathbf{k}}} \right)} \right| = \sqrt {{m^2} + {n^2} + {q^2}} \]
Complete step by step solution:
We know that \[\bar \tau = \bar r \times \bar F\]
Let us find \[\bar r\].
So, \[\bar r = \left( {{\mathbf{4i}}{\text{ }} + {\text{ }}{\mathbf{3j}}{\text{ }}-{\text{ }}{\mathbf{k}}} \right) - \left( {{\mathbf{i}}{\text{ }} + {\text{ }}{\mathbf{2j}}{\text{ }} + {\text{ }}{\mathbf{k}}} \right)\]
By simplifying, we get
\[\bar r = \left( {{\mathbf{4i}}{\text{ }} + {\text{ }}{\mathbf{3j}}{\text{ }}-{\text{ }}{\mathbf{k}}} \right) - i - 2j - k\]
\[\bar r = \left( {{\mathbf{4i}}{\text{ - i}} + {\text{ }}{\mathbf{3j}} - 2j{\text{ }}-{\text{ }}{\mathbf{k}} - k} \right)\]
\[\bar r = \left( {3{\mathbf{i}}{\text{ }} + {\text{ }}j{\text{ - 2}}{\mathbf{k}}} \right)\]
Also, we know that \[{\mathbf{F}}{\text{ }} = {\text{ }}\left( {{\mathbf{i}}{\text{ }} + {\text{ }}{\mathbf{2j}}{\text{ }} + {\text{ }}{\mathbf{3k}}} \right)\]
Now, we will find the torque vector.
\[\tau = r \times F\]
\[r \times F = \left| {\begin{array}{*{20}{c}}
i&j&k \\
3&1&{ - 2} \\
1&2&3
\end{array}} \right| = i\left( {1\left( 3 \right) - \left( { - 2} \right)2} \right) - j\left( {3\left( 3 \right) - \left( { - 2} \right)1} \right) + k\left( {3\left( 2 \right) - 1\left( 1 \right)} \right)\]
\[r \times F = \left| {\begin{array}{*{20}{c}}
i&j&k \\
3&1&{ - 2} \\
1&2&3
\end{array}} \right| = i\left( {3 + 4} \right) - j\left( {9 + 2} \right) + k\left( {6 - 1} \right)\]
By simplifying further, we get
\[r \times F = \left| {\begin{array}{*{20}{c}}
i&j&k \\
3&1&{ - 2} \\
1&2&3
\end{array}} \right| = i\left( 7 \right) - j\left( {11} \right) + k\left( 5 \right)\]
The magnitude of the torque vector is \[\left( 7 \right)i - \left( {11} \right)j + \left( 5 \right)k\].
Now, we will find its magnitude.Thus, we get
\[\left| \tau \right| = \left| {\sqrt {{{\left( 7 \right)}^2} + 11{{\left( 1 \right)}^{^2}} + {{\left( 5 \right)}^2}} } \right|\]
Thus, the magnitude of a vector is \[\left| \tau \right| = \left| {\sqrt {49 + 121 + 25} } \right|\]
\[\left| \tau \right| = \left| {195} \right|\]
That is \[\left| \tau \right| = 195\]
Hence, the magnitude of torque is 195.
Therefore, the value of X is 195.
Note: Here, students generally make mistakes in calculating the radius vector using vectors \[\left( {{\mathbf{4i}}{\text{ }} + {\text{ }}{\mathbf{3j}}{\text{ }}-{\text{ }}{\mathbf{k}}} \right)\] and \[\left( {{\mathbf{i}}{\text{ }} + {\text{ }}{\mathbf{2j}}{\text{ }} + {\text{ }}{\mathbf{k}}} \right)\]. Also, they may confuse with signs while calculating the cross product of the vectors r and F. So, ultimately the end result depends on the cross product of the vectors r and F. If it is wrong then we will get the false magnitude of the resultant vector.
Formula used: The formula for torque in the form of vector notation is given below.
\[\tau = r \times F\]
Here, \[\tau \] is the torque, \[r\] is the radius and \[F\] is the force.
Now, the cross of product of any two vectors such as \[A\left( {{a_1},{a_2},{a_3}} \right)\] and \[B\left( {{b_1},{b_2},{b_3}} \right)\]
So, \[A \times B = \left| {\begin{array}{*{20}{c}} i&j&k \\ {{a_1}}&{{a_2}}&{{a_3}} \\ {{b_1}}&{{b_2}}&{{b_3}} \end{array}} \right| = i\left( {{a_2}{b_3} - {a_3}{b_2}} \right) - j\left( {{a_1}{b_3} - {a_3}{b_1}} \right) + k\left( {{a_1}{b_2} - {a_2}{b_1}} \right)\]
Also, the magnitude of vector \[\left( {m{\mathbf{i}}{\text{ }} + {\text{ n}}{\mathbf{j}}{\text{ }} + {\text{ q}}{\mathbf{k}}} \right)\] is given below.
\[\left| {\left( {m{\mathbf{i}}{\text{ }} + {\text{ n}}{\mathbf{j}}{\text{ }} + {\text{ q}}{\mathbf{k}}} \right)} \right| = \sqrt {{m^2} + {n^2} + {q^2}} \]
Complete step by step solution:
We know that \[\bar \tau = \bar r \times \bar F\]
Let us find \[\bar r\].
So, \[\bar r = \left( {{\mathbf{4i}}{\text{ }} + {\text{ }}{\mathbf{3j}}{\text{ }}-{\text{ }}{\mathbf{k}}} \right) - \left( {{\mathbf{i}}{\text{ }} + {\text{ }}{\mathbf{2j}}{\text{ }} + {\text{ }}{\mathbf{k}}} \right)\]
By simplifying, we get
\[\bar r = \left( {{\mathbf{4i}}{\text{ }} + {\text{ }}{\mathbf{3j}}{\text{ }}-{\text{ }}{\mathbf{k}}} \right) - i - 2j - k\]
\[\bar r = \left( {{\mathbf{4i}}{\text{ - i}} + {\text{ }}{\mathbf{3j}} - 2j{\text{ }}-{\text{ }}{\mathbf{k}} - k} \right)\]
\[\bar r = \left( {3{\mathbf{i}}{\text{ }} + {\text{ }}j{\text{ - 2}}{\mathbf{k}}} \right)\]
Also, we know that \[{\mathbf{F}}{\text{ }} = {\text{ }}\left( {{\mathbf{i}}{\text{ }} + {\text{ }}{\mathbf{2j}}{\text{ }} + {\text{ }}{\mathbf{3k}}} \right)\]
Now, we will find the torque vector.
\[\tau = r \times F\]
\[r \times F = \left| {\begin{array}{*{20}{c}}
i&j&k \\
3&1&{ - 2} \\
1&2&3
\end{array}} \right| = i\left( {1\left( 3 \right) - \left( { - 2} \right)2} \right) - j\left( {3\left( 3 \right) - \left( { - 2} \right)1} \right) + k\left( {3\left( 2 \right) - 1\left( 1 \right)} \right)\]
\[r \times F = \left| {\begin{array}{*{20}{c}}
i&j&k \\
3&1&{ - 2} \\
1&2&3
\end{array}} \right| = i\left( {3 + 4} \right) - j\left( {9 + 2} \right) + k\left( {6 - 1} \right)\]
By simplifying further, we get
\[r \times F = \left| {\begin{array}{*{20}{c}}
i&j&k \\
3&1&{ - 2} \\
1&2&3
\end{array}} \right| = i\left( 7 \right) - j\left( {11} \right) + k\left( 5 \right)\]
The magnitude of the torque vector is \[\left( 7 \right)i - \left( {11} \right)j + \left( 5 \right)k\].
Now, we will find its magnitude.Thus, we get
\[\left| \tau \right| = \left| {\sqrt {{{\left( 7 \right)}^2} + 11{{\left( 1 \right)}^{^2}} + {{\left( 5 \right)}^2}} } \right|\]
Thus, the magnitude of a vector is \[\left| \tau \right| = \left| {\sqrt {49 + 121 + 25} } \right|\]
\[\left| \tau \right| = \left| {195} \right|\]
That is \[\left| \tau \right| = 195\]
Hence, the magnitude of torque is 195.
Therefore, the value of X is 195.
Note: Here, students generally make mistakes in calculating the radius vector using vectors \[\left( {{\mathbf{4i}}{\text{ }} + {\text{ }}{\mathbf{3j}}{\text{ }}-{\text{ }}{\mathbf{k}}} \right)\] and \[\left( {{\mathbf{i}}{\text{ }} + {\text{ }}{\mathbf{2j}}{\text{ }} + {\text{ }}{\mathbf{k}}} \right)\]. Also, they may confuse with signs while calculating the cross product of the vectors r and F. So, ultimately the end result depends on the cross product of the vectors r and F. If it is wrong then we will get the false magnitude of the resultant vector.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

