
A current of $1\,mA$ is flowing through a copper wire. How many electrons will pass a given point in one second. Take $\left[ {e = 1.6 \times {{10}^{ - 19}}\,C} \right]$?
(A) $6.25 \times {10^{19}}$
(B) $6.25 \times {10^9}$
(C) $6.25 \times {10^{31}}$
(D) $6.25 \times {10^{15}}$
Answer
218.7k+ views
Hint: the number of electrons will pass a given point in one second can be determined by using the current formula. In the current formula, the charge is written as the product of the number of electrons and the charge of the electrons, so that the number of electrons passed can be determined.
Useful formula
The flow of charge is given by,
$q = ne$
Where, $q$ is the charge in the copper wire, $n$ is the number of electrons and $e$ is the charge of the electrons.
The current flow in the copper wire is given by,
$I = \dfrac{q}{t}$
Where, $I$ is the current in the copper wire, $q$ is the charge in the copper wire and $t$ is the time.
Complete step by step solution
Given that,
The current flow sin the copper wire is, $I = 1\,mA \Rightarrow 1 \times {10^{ - 3}}\,A$
The charge of the electron is, $e = 1.6 \times {10^{ - 19}}\,C$
The time to pass the given point, $t = 1\,s$
Now,
The flow of charge is given by,
$q = ne\,..................\left( 1 \right)$
The current flow in the copper wire is given by,
$I = \dfrac{q}{t}\,....................\left( 2 \right)$
By substituting the equation (1) in the equation (2), then the equation (2) is written as,
$I = \dfrac{{ne}}{t}$
By rearranging the terms, then the above equation is written as,
$ne = It$
By keeping the term $n$ in one side and the other terms in other side, then the above equation is written as,
$n = \dfrac{{It}}{e}$
By substituting the current flow, time and charge of the electron in the above equation, then the above equation is written as,
$n = \dfrac{{1 \times {{10}^{ - 3}} \times 1}}{{1.6 \times {{10}^{ - 19}}}}$
By rearranging the terms, then the above equation is written as,
$n = \dfrac{{1 \times {{10}^{ - 3}} \times 1 \times {{10}^{19}}}}{{1.6}}$
On multiplying the terms in the numerator, then
$n = \dfrac{{1 \times {{10}^{16}}}}{{1.6}}$
On dividing the terms in the above equation, then
$n = 0.625 \times {10^{16}}$
Then the above equation is written as,
$n = 6.25 \times {10^{15}}$
Hence, the option (D) is the correct answer
Note: When the current in the circuit increases, the greater the number of electrons flowing in the circuit, and also the time increases the number of the electrons will also increase. The charge of electrons is inversely proportional to the number of electrons but the charge of electrons is a constant value, it will never change.
Useful formula
The flow of charge is given by,
$q = ne$
Where, $q$ is the charge in the copper wire, $n$ is the number of electrons and $e$ is the charge of the electrons.
The current flow in the copper wire is given by,
$I = \dfrac{q}{t}$
Where, $I$ is the current in the copper wire, $q$ is the charge in the copper wire and $t$ is the time.
Complete step by step solution
Given that,
The current flow sin the copper wire is, $I = 1\,mA \Rightarrow 1 \times {10^{ - 3}}\,A$
The charge of the electron is, $e = 1.6 \times {10^{ - 19}}\,C$
The time to pass the given point, $t = 1\,s$
Now,
The flow of charge is given by,
$q = ne\,..................\left( 1 \right)$
The current flow in the copper wire is given by,
$I = \dfrac{q}{t}\,....................\left( 2 \right)$
By substituting the equation (1) in the equation (2), then the equation (2) is written as,
$I = \dfrac{{ne}}{t}$
By rearranging the terms, then the above equation is written as,
$ne = It$
By keeping the term $n$ in one side and the other terms in other side, then the above equation is written as,
$n = \dfrac{{It}}{e}$
By substituting the current flow, time and charge of the electron in the above equation, then the above equation is written as,
$n = \dfrac{{1 \times {{10}^{ - 3}} \times 1}}{{1.6 \times {{10}^{ - 19}}}}$
By rearranging the terms, then the above equation is written as,
$n = \dfrac{{1 \times {{10}^{ - 3}} \times 1 \times {{10}^{19}}}}{{1.6}}$
On multiplying the terms in the numerator, then
$n = \dfrac{{1 \times {{10}^{16}}}}{{1.6}}$
On dividing the terms in the above equation, then
$n = 0.625 \times {10^{16}}$
Then the above equation is written as,
$n = 6.25 \times {10^{15}}$
Hence, the option (D) is the correct answer
Note: When the current in the circuit increases, the greater the number of electrons flowing in the circuit, and also the time increases the number of the electrons will also increase. The charge of electrons is inversely proportional to the number of electrons but the charge of electrons is a constant value, it will never change.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

