
A current of $1\,mA$ is flowing through a copper wire. How many electrons will pass a given point in one second. Take $\left[ {e = 1.6 \times {{10}^{ - 19}}\,C} \right]$?
(A) $6.25 \times {10^{19}}$
(B) $6.25 \times {10^9}$
(C) $6.25 \times {10^{31}}$
(D) $6.25 \times {10^{15}}$
Answer
164.1k+ views
Hint: the number of electrons will pass a given point in one second can be determined by using the current formula. In the current formula, the charge is written as the product of the number of electrons and the charge of the electrons, so that the number of electrons passed can be determined.
Useful formula
The flow of charge is given by,
$q = ne$
Where, $q$ is the charge in the copper wire, $n$ is the number of electrons and $e$ is the charge of the electrons.
The current flow in the copper wire is given by,
$I = \dfrac{q}{t}$
Where, $I$ is the current in the copper wire, $q$ is the charge in the copper wire and $t$ is the time.
Complete step by step solution
Given that,
The current flow sin the copper wire is, $I = 1\,mA \Rightarrow 1 \times {10^{ - 3}}\,A$
The charge of the electron is, $e = 1.6 \times {10^{ - 19}}\,C$
The time to pass the given point, $t = 1\,s$
Now,
The flow of charge is given by,
$q = ne\,..................\left( 1 \right)$
The current flow in the copper wire is given by,
$I = \dfrac{q}{t}\,....................\left( 2 \right)$
By substituting the equation (1) in the equation (2), then the equation (2) is written as,
$I = \dfrac{{ne}}{t}$
By rearranging the terms, then the above equation is written as,
$ne = It$
By keeping the term $n$ in one side and the other terms in other side, then the above equation is written as,
$n = \dfrac{{It}}{e}$
By substituting the current flow, time and charge of the electron in the above equation, then the above equation is written as,
$n = \dfrac{{1 \times {{10}^{ - 3}} \times 1}}{{1.6 \times {{10}^{ - 19}}}}$
By rearranging the terms, then the above equation is written as,
$n = \dfrac{{1 \times {{10}^{ - 3}} \times 1 \times {{10}^{19}}}}{{1.6}}$
On multiplying the terms in the numerator, then
$n = \dfrac{{1 \times {{10}^{16}}}}{{1.6}}$
On dividing the terms in the above equation, then
$n = 0.625 \times {10^{16}}$
Then the above equation is written as,
$n = 6.25 \times {10^{15}}$
Hence, the option (D) is the correct answer
Note: When the current in the circuit increases, the greater the number of electrons flowing in the circuit, and also the time increases the number of the electrons will also increase. The charge of electrons is inversely proportional to the number of electrons but the charge of electrons is a constant value, it will never change.
Useful formula
The flow of charge is given by,
$q = ne$
Where, $q$ is the charge in the copper wire, $n$ is the number of electrons and $e$ is the charge of the electrons.
The current flow in the copper wire is given by,
$I = \dfrac{q}{t}$
Where, $I$ is the current in the copper wire, $q$ is the charge in the copper wire and $t$ is the time.
Complete step by step solution
Given that,
The current flow sin the copper wire is, $I = 1\,mA \Rightarrow 1 \times {10^{ - 3}}\,A$
The charge of the electron is, $e = 1.6 \times {10^{ - 19}}\,C$
The time to pass the given point, $t = 1\,s$
Now,
The flow of charge is given by,
$q = ne\,..................\left( 1 \right)$
The current flow in the copper wire is given by,
$I = \dfrac{q}{t}\,....................\left( 2 \right)$
By substituting the equation (1) in the equation (2), then the equation (2) is written as,
$I = \dfrac{{ne}}{t}$
By rearranging the terms, then the above equation is written as,
$ne = It$
By keeping the term $n$ in one side and the other terms in other side, then the above equation is written as,
$n = \dfrac{{It}}{e}$
By substituting the current flow, time and charge of the electron in the above equation, then the above equation is written as,
$n = \dfrac{{1 \times {{10}^{ - 3}} \times 1}}{{1.6 \times {{10}^{ - 19}}}}$
By rearranging the terms, then the above equation is written as,
$n = \dfrac{{1 \times {{10}^{ - 3}} \times 1 \times {{10}^{19}}}}{{1.6}}$
On multiplying the terms in the numerator, then
$n = \dfrac{{1 \times {{10}^{16}}}}{{1.6}}$
On dividing the terms in the above equation, then
$n = 0.625 \times {10^{16}}$
Then the above equation is written as,
$n = 6.25 \times {10^{15}}$
Hence, the option (D) is the correct answer
Note: When the current in the circuit increases, the greater the number of electrons flowing in the circuit, and also the time increases the number of the electrons will also increase. The charge of electrons is inversely proportional to the number of electrons but the charge of electrons is a constant value, it will never change.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Wheatstone Bridge for JEE Main Physics 2025

Charging and Discharging of Capacitor
