
A circle of radius ${\text{R}}$ is drawn in a uniform electric field ${\text{E}}$ as shown in the figure. \[{V_a}\] , \[{V_b}\] , \[{V_c}\] , \[{V_d}\] respectively are the potential of point \[A\] , \[B\] , \[C\] , and $D$ at the periphery of the circle then:

(A) \[{V_A} > {V_C},{V_B} - {V_D}\]
(B) \[{V_A} < {V_C},{V_B} - {V_D}\]
(C) \[{V_A} = {V_C},{V_B} < {V_D}\]
(D) \[{V_A} = {V_C},{V_B} > {V_D}\]
Answer
134.4k+ views
Hint: It is possible to consider the electric field as an electrical property associated with each point in the space where a charge is present in any form. The electric force per unit charge is also described as an electric field.
Complete Step-by-Step Solution:
According to the question,
We have been provided with a circle whose radius is ${\text{R}}$
It is also stated in the question that the electric field is ${\text{E}}$
In the given figure of the circle drawn inside the electric field,
It is also given that ${{\text{V}}_{\text{A}}},{{\text{V}}_{\text{B}}},{{\text{V}}_{\text{C}}},{{\text{V}}_{\text{D}}}$ are respectively the potentials of points ${\text{A}},{\text{B}},{\text{C}},{\text{D}}$
Now, let us check the relation between the potentials of point \[B\] and point \[D\] .
In this case, the potential at point \[D\] will be more than the potential at point \[B\] .
That is
${{\text{V}}_{\text{D}}} > {{\text{V}}_{\text{B}}}$ or we can rewrite this as ${{\text{V}}_{\text{B}}} < {{\text{V}}_{\text{D}}}$
This is because electric field lines always flow from higher potential to lower potential.
Now, let us determine the relation about the potentials of the point \[A\] and point \[C\] . The potential of point \[A\] will be equal to the potential of point \[C\] .
That is
${{\text{V}}_{\text{A}}} = {{\text{V}}_{\text{C}}}$
In the above stated situation, the potentials are equal because both these points are situated at the exact same vertical line.
So, we can conclude that the potential at point \[A\] is equal to the potential at point \[C\] . And also, the potential of point \[B\] is less than that of potential at point \[D\] .
That is
\[{V_A} = {V_C}\]
And \[{V_B} < {V_D}\]
Hence, the correct option is (C.)
Note: Mathematically, the electric field is defined as a vector field that can be associated with each point in space, at which point the force per unit charge is exerted on a positive test charge at rest. The electric field is generated by electric charges or by magnetic fields that vary in time. The electric field is responsible for the attractive forces between the atomic nucleus and the electrons that then hold together in the case of the atomic scale.
Complete Step-by-Step Solution:
According to the question,
We have been provided with a circle whose radius is ${\text{R}}$
It is also stated in the question that the electric field is ${\text{E}}$
In the given figure of the circle drawn inside the electric field,
It is also given that ${{\text{V}}_{\text{A}}},{{\text{V}}_{\text{B}}},{{\text{V}}_{\text{C}}},{{\text{V}}_{\text{D}}}$ are respectively the potentials of points ${\text{A}},{\text{B}},{\text{C}},{\text{D}}$
Now, let us check the relation between the potentials of point \[B\] and point \[D\] .
In this case, the potential at point \[D\] will be more than the potential at point \[B\] .
That is
${{\text{V}}_{\text{D}}} > {{\text{V}}_{\text{B}}}$ or we can rewrite this as ${{\text{V}}_{\text{B}}} < {{\text{V}}_{\text{D}}}$
This is because electric field lines always flow from higher potential to lower potential.
Now, let us determine the relation about the potentials of the point \[A\] and point \[C\] . The potential of point \[A\] will be equal to the potential of point \[C\] .
That is
${{\text{V}}_{\text{A}}} = {{\text{V}}_{\text{C}}}$
In the above stated situation, the potentials are equal because both these points are situated at the exact same vertical line.
So, we can conclude that the potential at point \[A\] is equal to the potential at point \[C\] . And also, the potential of point \[B\] is less than that of potential at point \[D\] .
That is
\[{V_A} = {V_C}\]
And \[{V_B} < {V_D}\]
Hence, the correct option is (C.)
Note: Mathematically, the electric field is defined as a vector field that can be associated with each point in space, at which point the force per unit charge is exerted on a positive test charge at rest. The electric field is generated by electric charges or by magnetic fields that vary in time. The electric field is responsible for the attractive forces between the atomic nucleus and the electrons that then hold together in the case of the atomic scale.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Wheatstone Bridge for JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Advanced 2024 Syllabus Weightage
