
A certain dye absorbs at 4000 $\dot{A}$ and fluoresces 5000 $\dot{A}$ at these being wavelengths of maximum absorption that under given conditions 40% of the absorbed energy is emitted. Calculate the ratio of the number of quanta emitted to the number absorbed.
Answer
164.1k+ views
Hint: Quantum yield is the average quanta value extracted and the quanta value absorbed. In simple systems, the amount of quantum yield is usually much higher than the unit and is determined primarily by the amount of energy levels.
Complete Step by Step Solution:
Energy of light absorbed in an photon=$\dfrac{hc}{{{\lambda }_{absorbed}}}$
Let ${{n}_{1}}$ photon are absorbed
Total energy absorbed=$\dfrac{n1hc}{{{\lambda }_{absorbed}}}$
Now $E$ of light re-emitted out in one photon=$\dfrac{hc}{{{\lambda }_{emitted}}}$
Let ${{n}_{2}}$ photon are re-emitted then
Total energy re-emitted out=$\dfrac{n2hc}{{{\lambda }_{emitted}}}$
$\Rightarrow {{E}_{absorbed}}\times 40/100={{E}_{re-emitted}}$
$\Rightarrow \dfrac{hc}{{{\lambda }_{absorbed}}}\times n1\times \dfrac{40}{100}=n2\times hc{{\lambda }_{emitted}}$
$\Rightarrow \dfrac{n2}{n1}=\dfrac{40}{100}\times {{\lambda }_{emitted}}{{\lambda }_{absorbed}}$
$\Rightarrow \dfrac{40}{100}\times \dfrac{5000}{4000}$
$\Rightarrow \dfrac{{{n}_{2}}}{{{n}_{1}}}=0.5$
So, the ratio of the number of quanta emitted to the number absorbed is $0.5$.
Additional Information: Quantum yield is generally understood as the product of the reaction product. It is calculated by the number of reacting moles per unit of time. This type of quantum yield is now very popular, as it can be measured at minimal cost. Its disadvantage is that it depends on the reaction time at which it is determined. For this reason it can be considered a visual quantum yield. The problem becomes apparent when the reaction consists of a few steps.
Note: The concept of quantum has a heuristic meaning only in situations where the output spectrum is independent of the abundance of pleasant light. Situations of this type are found only in changes from low voltage electronic components that are cheerful and independent to the vibrating vibration reserve, which are acquired with excitement.
Complete Step by Step Solution:
Energy of light absorbed in an photon=$\dfrac{hc}{{{\lambda }_{absorbed}}}$
Let ${{n}_{1}}$ photon are absorbed
Total energy absorbed=$\dfrac{n1hc}{{{\lambda }_{absorbed}}}$
Now $E$ of light re-emitted out in one photon=$\dfrac{hc}{{{\lambda }_{emitted}}}$
Let ${{n}_{2}}$ photon are re-emitted then
Total energy re-emitted out=$\dfrac{n2hc}{{{\lambda }_{emitted}}}$
$\Rightarrow {{E}_{absorbed}}\times 40/100={{E}_{re-emitted}}$
$\Rightarrow \dfrac{hc}{{{\lambda }_{absorbed}}}\times n1\times \dfrac{40}{100}=n2\times hc{{\lambda }_{emitted}}$
$\Rightarrow \dfrac{n2}{n1}=\dfrac{40}{100}\times {{\lambda }_{emitted}}{{\lambda }_{absorbed}}$
$\Rightarrow \dfrac{40}{100}\times \dfrac{5000}{4000}$
$\Rightarrow \dfrac{{{n}_{2}}}{{{n}_{1}}}=0.5$
So, the ratio of the number of quanta emitted to the number absorbed is $0.5$.
Additional Information: Quantum yield is generally understood as the product of the reaction product. It is calculated by the number of reacting moles per unit of time. This type of quantum yield is now very popular, as it can be measured at minimal cost. Its disadvantage is that it depends on the reaction time at which it is determined. For this reason it can be considered a visual quantum yield. The problem becomes apparent when the reaction consists of a few steps.
Note: The concept of quantum has a heuristic meaning only in situations where the output spectrum is independent of the abundance of pleasant light. Situations of this type are found only in changes from low voltage electronic components that are cheerful and independent to the vibrating vibration reserve, which are acquired with excitement.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes
