
A car A is going northeast at 80 km/h and another car B is going southeast at 60 km/h. then the direction of the velocity of A relative to V makes with the north an angle \[a\] such that \[\tan a\] is:
(A) \[\dfrac{1}{7}\]
(B) \[\dfrac{{\sqrt 2 }}{7}\]
(C) \[\dfrac{{\sqrt 7 }}{2}\]
(D) \[1\]
Answer
151.8k+ views
Hint: The velocity of car A relative to car B is graphically the arrow drawn from the tip of the arrow representing the velocity of car B to the tip of the arrow representing the velocity of car A. The angle between the direction of car A and car B is 90 degrees.
Formula used: In this solution we will be using the following formulae;
Complete Step-by-Step Solution:
To find the angle, we can draw a graphical representation of the situation stated in the question as shown above.
The velocity of A with respect to B is shown by the arrow joining the tip of the velocity of car B to the tip of velocity of car A as seen in figure. Since car A is northeast and car B is southeast, the angle between them is hence 90 degrees, and hence 45 degree angle is between them and both axes (north and east). Hence, the three vectors make up a right angled triangle.
We can see from observation, that the component of AB on the north axis is the sum of the component of B and A on the same north axis. Hence,
\[{V_{AB}}\cos a = 80\cos 45^\circ + 60\cos 45^\circ \]
\[ \Rightarrow {V_{AB}}\cos a = 80\dfrac{{\sqrt 2 }}{2} + 60\dfrac{{\sqrt 2 }}{2} = 10\left( {4\sqrt 2 + 3\sqrt 2 } \right)\]
Also, the component on the east axis (horizontal) is the component of A on the horizontal minus the component of B on the horizontal, hence,
\[{V_{AB}}\sin a = 80\sin 45^\circ - 60\cos 45^\circ \]
\[ \Rightarrow {V_{AB}}\sin a = 80\dfrac{{\sqrt 2 }}{2} - 60\dfrac{{\sqrt 2 }}{2} = 10\left( {4\sqrt 2 - 3\sqrt 2 } \right)\]
By dividing the vertical and horizontal component, we get
\[\dfrac{{{V_{AB}}\sin a}}{{{V_{AB}}\cos a}} = \dfrac{{10\left( {4\sqrt 2 - 3\sqrt 2 } \right)}}{{10\left( {4\sqrt 2 - 3\sqrt 2 } \right)}} = \dfrac{{\left( {4\sqrt 2 - 3\sqrt 2 } \right)}}{{\left( {4\sqrt 2 + 3\sqrt 2 } \right)}}\]
\[ \Rightarrow \tan a = \dfrac{{\left( {4\sqrt 2 - 3\sqrt 2 } \right)}}{{\left( {4\sqrt 2 + 3\sqrt 2 } \right)}}\]
\[ \Rightarrow \tan a = \dfrac{{\sqrt 2 }}{{7\sqrt 2 }} = \dfrac{1}{7}\]
Hence, the correct option is A
Note: for clarity, the angle \[a\] is the angle the velocity makes with the north axis because by mathematical principles the angle a line A makes with another line B is equal the angle the line A will make with another line C which is parallel to the line B. the line XX’ is parallel to the north axis.
Formula used: In this solution we will be using the following formulae;
Complete Step-by-Step Solution:

To find the angle, we can draw a graphical representation of the situation stated in the question as shown above.
The velocity of A with respect to B is shown by the arrow joining the tip of the velocity of car B to the tip of velocity of car A as seen in figure. Since car A is northeast and car B is southeast, the angle between them is hence 90 degrees, and hence 45 degree angle is between them and both axes (north and east). Hence, the three vectors make up a right angled triangle.
We can see from observation, that the component of AB on the north axis is the sum of the component of B and A on the same north axis. Hence,
\[{V_{AB}}\cos a = 80\cos 45^\circ + 60\cos 45^\circ \]
\[ \Rightarrow {V_{AB}}\cos a = 80\dfrac{{\sqrt 2 }}{2} + 60\dfrac{{\sqrt 2 }}{2} = 10\left( {4\sqrt 2 + 3\sqrt 2 } \right)\]
Also, the component on the east axis (horizontal) is the component of A on the horizontal minus the component of B on the horizontal, hence,
\[{V_{AB}}\sin a = 80\sin 45^\circ - 60\cos 45^\circ \]
\[ \Rightarrow {V_{AB}}\sin a = 80\dfrac{{\sqrt 2 }}{2} - 60\dfrac{{\sqrt 2 }}{2} = 10\left( {4\sqrt 2 - 3\sqrt 2 } \right)\]
By dividing the vertical and horizontal component, we get
\[\dfrac{{{V_{AB}}\sin a}}{{{V_{AB}}\cos a}} = \dfrac{{10\left( {4\sqrt 2 - 3\sqrt 2 } \right)}}{{10\left( {4\sqrt 2 - 3\sqrt 2 } \right)}} = \dfrac{{\left( {4\sqrt 2 - 3\sqrt 2 } \right)}}{{\left( {4\sqrt 2 + 3\sqrt 2 } \right)}}\]
\[ \Rightarrow \tan a = \dfrac{{\left( {4\sqrt 2 - 3\sqrt 2 } \right)}}{{\left( {4\sqrt 2 + 3\sqrt 2 } \right)}}\]
\[ \Rightarrow \tan a = \dfrac{{\sqrt 2 }}{{7\sqrt 2 }} = \dfrac{1}{7}\]
Hence, the correct option is A
Note: for clarity, the angle \[a\] is the angle the velocity makes with the north axis because by mathematical principles the angle a line A makes with another line B is equal the angle the line A will make with another line C which is parallel to the line B. the line XX’ is parallel to the north axis.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Collision - Important Concepts and Tips for JEE

Which of the following is the smallest unit of length class 11 physics JEE_Main

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Charging and Discharging of Capacitor

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Laws of Motion Class 11 Notes: CBSE Physics Chapter 4
