
A capacitor charges from a cell through a resistance whose time constant is T. In how much time will the capacitor collect 10% of its charge?
(A) T log$_e$0.1
(B) T log$_e$0.9
(C) T log$_e\left( {\dfrac{{10}}{9}} \right)$
(D) T log$_e\left( {\dfrac{{11}}{{10}}} \right)$
Answer
170.7k+ views
Hint: The charge on capacitor, Q is given by Q = ${Q_0}\left( {1 - {e^{ - \dfrac{t}{T}}}} \right)$, where Q$_0$ is the final charge on the capacitor, T is the time constant and t is the time elapsed. We know that Q = 0.1Q$_0$.
Complete step-by-step answer:
When a capacitor is connected to a cell, it does not gain all the charge all of a sudden. Sometime is elapsed between the capacitor being connected to the cell and the capacitor being fully charged. The charge accumulated on the capacitor is given by the equation,
$Q = {Q_0}\left( {1 - {e^{ - \dfrac{t}{T}}}} \right)$ ………………………….(1)
Where Q$_0$is the final charge on the capacitor, t is the time elapsed from connecting the capacitor to the cell and T is the time constant which is equal to the time taken for the capacitor to reach 63% of its maximum possible fully charged voltage.
From the given question, we know that the charge accumulated on the capacitor is 10% of the maximum possible charge on the capacitor.
$ \Rightarrow Q = 0.1{Q_0}$ ……………………. (2)
Now, we substitute the value of equation (2) in equation (1), we obtain,
$0.1{Q_0} = {Q_0}\left( {1 - {e^{ - \dfrac{t}{T}}}} \right)$
Upon simplifying, we find out the value of t which is the time taken by the capacitor to accumulate 10% of the maximum charge.
$0.9 = {e^{ - \dfrac{t}{T}}}$
Taking log of the equation we obtain,
$ - \dfrac{t}{T} = {\log _e}\left( {0.9} \right) = {\log _e}\left( {\dfrac{9}{{10}}} \right)$
On removing the minus sign, the term inside the log function is reciprocated. Hence, we find that,
$\dfrac{t}{T} = {\log _e}\left( {\dfrac{{10}}{9}} \right)$
Hence, the time taken by the capacitor to accumulate 10% of its maximum charge is t = T${\log _e}\left( {\dfrac{{10}}{9}} \right)$
Therefore, option C is the correct answer.
Note: We do not need the emf of the cell or the maximum charge that can be accumulated in the capacitor to solve this question. If this data is given in the question, you can ignore it if there is not any other part of the question which requires the use of that data.
Complete step-by-step answer:
When a capacitor is connected to a cell, it does not gain all the charge all of a sudden. Sometime is elapsed between the capacitor being connected to the cell and the capacitor being fully charged. The charge accumulated on the capacitor is given by the equation,
$Q = {Q_0}\left( {1 - {e^{ - \dfrac{t}{T}}}} \right)$ ………………………….(1)
Where Q$_0$is the final charge on the capacitor, t is the time elapsed from connecting the capacitor to the cell and T is the time constant which is equal to the time taken for the capacitor to reach 63% of its maximum possible fully charged voltage.
From the given question, we know that the charge accumulated on the capacitor is 10% of the maximum possible charge on the capacitor.
$ \Rightarrow Q = 0.1{Q_0}$ ……………………. (2)
Now, we substitute the value of equation (2) in equation (1), we obtain,
$0.1{Q_0} = {Q_0}\left( {1 - {e^{ - \dfrac{t}{T}}}} \right)$
Upon simplifying, we find out the value of t which is the time taken by the capacitor to accumulate 10% of the maximum charge.
$0.9 = {e^{ - \dfrac{t}{T}}}$
Taking log of the equation we obtain,
$ - \dfrac{t}{T} = {\log _e}\left( {0.9} \right) = {\log _e}\left( {\dfrac{9}{{10}}} \right)$
On removing the minus sign, the term inside the log function is reciprocated. Hence, we find that,
$\dfrac{t}{T} = {\log _e}\left( {\dfrac{{10}}{9}} \right)$
Hence, the time taken by the capacitor to accumulate 10% of its maximum charge is t = T${\log _e}\left( {\dfrac{{10}}{9}} \right)$
Therefore, option C is the correct answer.
Note: We do not need the emf of the cell or the maximum charge that can be accumulated in the capacitor to solve this question. If this data is given in the question, you can ignore it if there is not any other part of the question which requires the use of that data.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

What is Hybridisation in Chemistry?

Wheatstone Bridge for JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
