
A capacitor charges from a cell through a resistance whose time constant is T. In how much time will the capacitor collect 10% of its charge?
(A) T log$_e$0.1
(B) T log$_e$0.9
(C) T log$_e\left( {\dfrac{{10}}{9}} \right)$
(D) T log$_e\left( {\dfrac{{11}}{{10}}} \right)$
Answer
219k+ views
Hint: The charge on capacitor, Q is given by Q = ${Q_0}\left( {1 - {e^{ - \dfrac{t}{T}}}} \right)$, where Q$_0$ is the final charge on the capacitor, T is the time constant and t is the time elapsed. We know that Q = 0.1Q$_0$.
Complete step-by-step answer:
When a capacitor is connected to a cell, it does not gain all the charge all of a sudden. Sometime is elapsed between the capacitor being connected to the cell and the capacitor being fully charged. The charge accumulated on the capacitor is given by the equation,
$Q = {Q_0}\left( {1 - {e^{ - \dfrac{t}{T}}}} \right)$ ………………………….(1)
Where Q$_0$is the final charge on the capacitor, t is the time elapsed from connecting the capacitor to the cell and T is the time constant which is equal to the time taken for the capacitor to reach 63% of its maximum possible fully charged voltage.
From the given question, we know that the charge accumulated on the capacitor is 10% of the maximum possible charge on the capacitor.
$ \Rightarrow Q = 0.1{Q_0}$ ……………………. (2)
Now, we substitute the value of equation (2) in equation (1), we obtain,
$0.1{Q_0} = {Q_0}\left( {1 - {e^{ - \dfrac{t}{T}}}} \right)$
Upon simplifying, we find out the value of t which is the time taken by the capacitor to accumulate 10% of the maximum charge.
$0.9 = {e^{ - \dfrac{t}{T}}}$
Taking log of the equation we obtain,
$ - \dfrac{t}{T} = {\log _e}\left( {0.9} \right) = {\log _e}\left( {\dfrac{9}{{10}}} \right)$
On removing the minus sign, the term inside the log function is reciprocated. Hence, we find that,
$\dfrac{t}{T} = {\log _e}\left( {\dfrac{{10}}{9}} \right)$
Hence, the time taken by the capacitor to accumulate 10% of its maximum charge is t = T${\log _e}\left( {\dfrac{{10}}{9}} \right)$
Therefore, option C is the correct answer.
Note: We do not need the emf of the cell or the maximum charge that can be accumulated in the capacitor to solve this question. If this data is given in the question, you can ignore it if there is not any other part of the question which requires the use of that data.
Complete step-by-step answer:
When a capacitor is connected to a cell, it does not gain all the charge all of a sudden. Sometime is elapsed between the capacitor being connected to the cell and the capacitor being fully charged. The charge accumulated on the capacitor is given by the equation,
$Q = {Q_0}\left( {1 - {e^{ - \dfrac{t}{T}}}} \right)$ ………………………….(1)
Where Q$_0$is the final charge on the capacitor, t is the time elapsed from connecting the capacitor to the cell and T is the time constant which is equal to the time taken for the capacitor to reach 63% of its maximum possible fully charged voltage.
From the given question, we know that the charge accumulated on the capacitor is 10% of the maximum possible charge on the capacitor.
$ \Rightarrow Q = 0.1{Q_0}$ ……………………. (2)
Now, we substitute the value of equation (2) in equation (1), we obtain,
$0.1{Q_0} = {Q_0}\left( {1 - {e^{ - \dfrac{t}{T}}}} \right)$
Upon simplifying, we find out the value of t which is the time taken by the capacitor to accumulate 10% of the maximum charge.
$0.9 = {e^{ - \dfrac{t}{T}}}$
Taking log of the equation we obtain,
$ - \dfrac{t}{T} = {\log _e}\left( {0.9} \right) = {\log _e}\left( {\dfrac{9}{{10}}} \right)$
On removing the minus sign, the term inside the log function is reciprocated. Hence, we find that,
$\dfrac{t}{T} = {\log _e}\left( {\dfrac{{10}}{9}} \right)$
Hence, the time taken by the capacitor to accumulate 10% of its maximum charge is t = T${\log _e}\left( {\dfrac{{10}}{9}} \right)$
Therefore, option C is the correct answer.
Note: We do not need the emf of the cell or the maximum charge that can be accumulated in the capacitor to solve this question. If this data is given in the question, you can ignore it if there is not any other part of the question which requires the use of that data.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

