
A body travels \[200cm\] in the first \[2sec\] and \[220cm\] in the next \[4sec\] with deceleration. The velocity of the body at the end of the \[{7^{th}}sec\] is:
A) \[20cm/s\]
B) \[15cm/s\]
C) \[10cm/s\]
D) \[0cm/s\]
Answer
157.5k+ views
Hint: Above problem is related to the motion of the body in a rectilinear way. So, we can easily apply the equations of motion to solve this problem.
The motion of the body in which the body travels along a straight line is called rectilinear motion. This motion is an example of translatory motion.
Formula used: To solve rectilinear problems, we use equations of motion.
There are three equations of motion by which we can find initial velocity$\left( u \right)$, final the velocity$\left( v \right)$, acceleration$\left( a \right)$, displacement$\left( s \right)$ and time taken$\left( t \right)$ by the bodies in their travelling path. The equations of motion are following-
i)$v = u + at$
ii) $s = ut + \dfrac{1}{2}a{t^2}$
iii) ${v^2} = {u^2} + 2as$
Complete step by step solution:
In the given question, we have a body, which travels \[200cm\] in first \[2sec\]. So, for finding initial velocity, we can apply the second equation of motion because we know the displacement and time. By the second equation of motion-
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting $s = 200cm$, $t = 2\sec $, we get-
$
200 = u \times 2 + \dfrac{1}{2}a{(2)^2} \\
\Rightarrow 200 = 2u + 2a \\
$
Or we can write-
$u + a = 100$ (i)
Now, in the next $4\sec $ body displaced $220cm$ more. So, the total displacement of the body will be $420cm(200cm + 220cm)$ and the total time taken $6\sec (2\sec + 4\sec )$. So, again by second equation of motion-
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting $s = 420cm$, $t = 6\sec $, we get-
$
420 = u \times 6 + \dfrac{1}{2}a{(6)^2} \\
\Rightarrow 420 = 6u + 18a \\
$
Or we can write-
$u + 3a = 70$ (ii)
On simplifying equation (i) and equation (ii), we get-
$a = - 15cm/{\sec ^2}$
Putting the value in $a$ in equation (i)
$
u - 15 = 100 \\
\Rightarrow u = 100 + 15 \\
\Rightarrow u = 115cm/s \\
$
In the new case, question is asking for velocity at the end of the \[{7^{th}}sec\]-
Now, using first equation of motion-
$v = u + at$
Substituting $u = 115cm/s$, $a = - 15cm/{\sec ^2}$and $t = 7\sec $, we get-
$
v = 115 + \left( { - 15} \right) \times 7 \\
\Rightarrow v = 115 - 105 \\
\therefore v = 10cm/s \\
$
Hence, the velocity of the body at the end of \[{7^{th}}sec\] is $10cm/s$.
Therefore, option (C) is correct.
Note: We have to remember all equations of motion to solve this question. Here, we use the second equation of motion. If there is a change in the acceleration then we can use the third equation of motion. One thing is to be remembered then when the velocity is increasing then there is acceleration and if velocity is decreasing then there is deceleration or retardation.
The motion of the body in which the body travels along a straight line is called rectilinear motion. This motion is an example of translatory motion.
Formula used: To solve rectilinear problems, we use equations of motion.
There are three equations of motion by which we can find initial velocity$\left( u \right)$, final the velocity$\left( v \right)$, acceleration$\left( a \right)$, displacement$\left( s \right)$ and time taken$\left( t \right)$ by the bodies in their travelling path. The equations of motion are following-
i)$v = u + at$
ii) $s = ut + \dfrac{1}{2}a{t^2}$
iii) ${v^2} = {u^2} + 2as$
Complete step by step solution:
In the given question, we have a body, which travels \[200cm\] in first \[2sec\]. So, for finding initial velocity, we can apply the second equation of motion because we know the displacement and time. By the second equation of motion-
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting $s = 200cm$, $t = 2\sec $, we get-
$
200 = u \times 2 + \dfrac{1}{2}a{(2)^2} \\
\Rightarrow 200 = 2u + 2a \\
$
Or we can write-
$u + a = 100$ (i)
Now, in the next $4\sec $ body displaced $220cm$ more. So, the total displacement of the body will be $420cm(200cm + 220cm)$ and the total time taken $6\sec (2\sec + 4\sec )$. So, again by second equation of motion-
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting $s = 420cm$, $t = 6\sec $, we get-
$
420 = u \times 6 + \dfrac{1}{2}a{(6)^2} \\
\Rightarrow 420 = 6u + 18a \\
$
Or we can write-
$u + 3a = 70$ (ii)
On simplifying equation (i) and equation (ii), we get-
$a = - 15cm/{\sec ^2}$
Putting the value in $a$ in equation (i)
$
u - 15 = 100 \\
\Rightarrow u = 100 + 15 \\
\Rightarrow u = 115cm/s \\
$
In the new case, question is asking for velocity at the end of the \[{7^{th}}sec\]-
Now, using first equation of motion-
$v = u + at$
Substituting $u = 115cm/s$, $a = - 15cm/{\sec ^2}$and $t = 7\sec $, we get-
$
v = 115 + \left( { - 15} \right) \times 7 \\
\Rightarrow v = 115 - 105 \\
\therefore v = 10cm/s \\
$
Hence, the velocity of the body at the end of \[{7^{th}}sec\] is $10cm/s$.
Therefore, option (C) is correct.
Note: We have to remember all equations of motion to solve this question. Here, we use the second equation of motion. If there is a change in the acceleration then we can use the third equation of motion. One thing is to be remembered then when the velocity is increasing then there is acceleration and if velocity is decreasing then there is deceleration or retardation.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
