
A body of mass 6 kg rests in limiting equilibrium on an inclined plane whose slope is ${{30}^{\circ }}$ . If the plane is raised to slope of ${{60}^{\circ }}$ , then the force (in kg-wt) along the plane required to support it is
\[\begin{align}
& ~A.~~~~~~~~~3 \\
& ~B.~~~~~~~~2\sqrt{3} \\
& ~C.~~~~~~~~~\sqrt{3} \\
& ~D.~~~~~~~~~3\sqrt{3} \\
\end{align}\]
Answer
206.4k+ views
Hint: As the slope is inclined a component of its weight will be pulling it downwards, as the body is at rest friction force will be acting on it. We can find this force and use it so find how much extra force is needed to hold the body at rest when inclination is increased.
Formula Used: Newton’s second law of motion F = ma, m is mass & a is acceleration maximum frictional force possible =$\mu N$, N is normal against the surface & $\mu $ is coefficient of friction.
Complete step-by-step answer:

Here, m is mass of body, g is acceleration due to gravity, f is maximum sliding friction, n is normal from incline, $\theta $ is angle of incline and mg is broken into components along and perpendicular to the surface.
When the angle of incline is ${{30}^{\circ }}$ , as there is no acceleration perpendicular to surface, net force perpendicular to surface must be zero (Newton’s second law of motion). So,
$n=mg\cos \theta $
$n=6g\cos {{30}^{\circ }}$
$n=3\sqrt{3}g$
Now since the body is in limiting equilibrium i.e. just about to slide then friction will have its maximum possible value. So,
$f=\mu n$
$f=3\sqrt{3}g\mu $ ... (1)
Also the body is at rest along the incline. Hence net force along the incline is zero. So,
$f=mg\sin \theta $
Putting value of f from equation (1) and putting given value
$3\sqrt{3}g\mu =6g\sin {{30}^{\circ }}$
$3\sqrt{3}\mu =6g\times \dfrac{1}{2}$
$\mu =\dfrac{1}{\sqrt{3}}$
Here, m is mass of body, g is acceleration due to gravity, f is maximum sliding friction, n is normal from incline, $\theta $ is angle of incline which is now ${{60}^{\circ }}$and mg is broken into components along and perpendicular to the surface.
When the angle of incline is ${{30}^{\circ }}$ , as there is no acceleration perpendicular to surface, net force perpendicular to surface must be zero (Newton’s second law of motion). So,
$n=mg\cos \theta $
$n=6g\cos {{60}^{\circ }}$
$n=3g$
The maximum possible friction force is
$f=\mu \times n$
$f=\dfrac{3g}{\sqrt{3}}=\sqrt{3}g$
Component of force due to gravity along the incline is
$mg\sin \theta =6g\sin {{60}^{\circ }}=3\sqrt{3}g$
So net force along the incline is down the incline with magnitude,
$\begin{align}
& 3\sqrt{3}g-\sqrt{3}g=2\sqrt{3}g \\
& \\
\end{align}$
Hence an extra force of $2\sqrt{3}g$ N or $2\sqrt{3}$ kg-wt is required upward along the incline.
So the correct option is B.
Note: Our final answer was $2\sqrt{3}g$N. But options are given in kg-wt, so we have to convert N in kg-wt. 1 kg-wt is the amount of force by which earth pulls the mass of 1 kg body i.e. weight of 1kg body. Therefore, 1kg-wt = g N or 1 N =1/g kg-wt. Hence,
$2\sqrt{3}g$ N = $2\sqrt{3}$ kg-wt.
Also the mentioned term “limiting equilibrium“ tells that the body is in equilibrium but just about to move.
Formula Used: Newton’s second law of motion F = ma, m is mass & a is acceleration maximum frictional force possible =$\mu N$, N is normal against the surface & $\mu $ is coefficient of friction.
Complete step-by-step answer:

Here, m is mass of body, g is acceleration due to gravity, f is maximum sliding friction, n is normal from incline, $\theta $ is angle of incline and mg is broken into components along and perpendicular to the surface.
When the angle of incline is ${{30}^{\circ }}$ , as there is no acceleration perpendicular to surface, net force perpendicular to surface must be zero (Newton’s second law of motion). So,
$n=mg\cos \theta $
$n=6g\cos {{30}^{\circ }}$
$n=3\sqrt{3}g$
Now since the body is in limiting equilibrium i.e. just about to slide then friction will have its maximum possible value. So,
$f=\mu n$
$f=3\sqrt{3}g\mu $ ... (1)
Also the body is at rest along the incline. Hence net force along the incline is zero. So,
$f=mg\sin \theta $
Putting value of f from equation (1) and putting given value
$3\sqrt{3}g\mu =6g\sin {{30}^{\circ }}$
$3\sqrt{3}\mu =6g\times \dfrac{1}{2}$
$\mu =\dfrac{1}{\sqrt{3}}$
Here, m is mass of body, g is acceleration due to gravity, f is maximum sliding friction, n is normal from incline, $\theta $ is angle of incline which is now ${{60}^{\circ }}$and mg is broken into components along and perpendicular to the surface.
When the angle of incline is ${{30}^{\circ }}$ , as there is no acceleration perpendicular to surface, net force perpendicular to surface must be zero (Newton’s second law of motion). So,
$n=mg\cos \theta $
$n=6g\cos {{60}^{\circ }}$
$n=3g$
The maximum possible friction force is
$f=\mu \times n$
$f=\dfrac{3g}{\sqrt{3}}=\sqrt{3}g$
Component of force due to gravity along the incline is
$mg\sin \theta =6g\sin {{60}^{\circ }}=3\sqrt{3}g$
So net force along the incline is down the incline with magnitude,
$\begin{align}
& 3\sqrt{3}g-\sqrt{3}g=2\sqrt{3}g \\
& \\
\end{align}$
Hence an extra force of $2\sqrt{3}g$ N or $2\sqrt{3}$ kg-wt is required upward along the incline.
So the correct option is B.
Note: Our final answer was $2\sqrt{3}g$N. But options are given in kg-wt, so we have to convert N in kg-wt. 1 kg-wt is the amount of force by which earth pulls the mass of 1 kg body i.e. weight of 1kg body. Therefore, 1kg-wt = g N or 1 N =1/g kg-wt. Hence,
$2\sqrt{3}g$ N = $2\sqrt{3}$ kg-wt.
Also the mentioned term “limiting equilibrium“ tells that the body is in equilibrium but just about to move.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

