
A body of mass $400g$ executes SHM of amplitude $20cm$. If the time period is $0.2\sec $ then find the total energy of the system?
Answer
233.1k+ views
Hint We have a simple body executing the simple harmonic motion and by applying the formula of energy which is$\dfrac{1}{2}m{\omega ^2}{A^2}$, we will be able to find the total required energy for the system. And while solving this we have to keep in mind to change the units of the needed entities.
Formula used
The total energy of the system,
$E = \dfrac{1}{2}m{\omega ^2}{A^2}$
Here,
$E$, will be the energy
$m$, will be the mass
$\omega $, will be the angular velocity
$A$, will be the area
Also, the formula for the angular velocity will be,
$\omega = \dfrac{{2\pi }}{T}$
Here,
$T$, will be the time period.
Complete Step By Step Solution So we have to find the total energy, for this, we will use the formula for the total energy mentioned in the formula.
$E = \dfrac{1}{2}m{\omega ^2}{A^2}$
So the above equation can also be written as,
\[E = \dfrac{1}{2}m{\left( {\dfrac{{2\pi }}{T}} \right)^2}{A^2}\]
Now on substituting the values, we get
Also while putting the values we had changed the units,
The equation will be like,
$ \Rightarrow \dfrac{{2{\pi ^2}\left( {400 \times {{10}^{ - 3}}kg} \right){{\left( {20 \times {{10}^{ - 2}}m} \right)}^2}}}{{0.20s}}$
Now on simplifying the above equations, we get
$ \Rightarrow 1.577J$
Therefore, $1.577J$ energy is required for the system.
Note Mechanical energy, the aggregate of the active energy, or energy of movement, and the possible energy, or energy put away in a framework because of the situation of its parts. Mechanical energy is consistent in a framework that has just gravitational powers or in a generally admired framework—that is, one lacking dissipative powers, for example, erosion and air obstruction, or one in which such powers can be sensibly ignored. In this manner, a swinging pendulum has its most prominent dynamic energy and least possible energy in the vertical situation, in which its speed is most noteworthy and its stature least; it has its most un-motor energy and most prominent likely energy at the limits of its swing, in which its speed is zero and its tallness is most noteworthy.
Formula used
The total energy of the system,
$E = \dfrac{1}{2}m{\omega ^2}{A^2}$
Here,
$E$, will be the energy
$m$, will be the mass
$\omega $, will be the angular velocity
$A$, will be the area
Also, the formula for the angular velocity will be,
$\omega = \dfrac{{2\pi }}{T}$
Here,
$T$, will be the time period.
Complete Step By Step Solution So we have to find the total energy, for this, we will use the formula for the total energy mentioned in the formula.
$E = \dfrac{1}{2}m{\omega ^2}{A^2}$
So the above equation can also be written as,
\[E = \dfrac{1}{2}m{\left( {\dfrac{{2\pi }}{T}} \right)^2}{A^2}\]
Now on substituting the values, we get
Also while putting the values we had changed the units,
The equation will be like,
$ \Rightarrow \dfrac{{2{\pi ^2}\left( {400 \times {{10}^{ - 3}}kg} \right){{\left( {20 \times {{10}^{ - 2}}m} \right)}^2}}}{{0.20s}}$
Now on simplifying the above equations, we get
$ \Rightarrow 1.577J$
Therefore, $1.577J$ energy is required for the system.
Note Mechanical energy, the aggregate of the active energy, or energy of movement, and the possible energy, or energy put away in a framework because of the situation of its parts. Mechanical energy is consistent in a framework that has just gravitational powers or in a generally admired framework—that is, one lacking dissipative powers, for example, erosion and air obstruction, or one in which such powers can be sensibly ignored. In this manner, a swinging pendulum has its most prominent dynamic energy and least possible energy in the vertical situation, in which its speed is most noteworthy and its stature least; it has its most un-motor energy and most prominent likely energy at the limits of its swing, in which its speed is zero and its tallness is most noteworthy.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

