Answer

Verified

64.2k+ views

**Hint:**When a body falls from the rest its initial velocity is zero and as the body is falling freely therefore the acceleration acting on the body is acceleration due to gravity. The velocity of the body will keep on increasing as the acceleration acting is constant and therefore the distance covered by the body will also keep on increasing.

**Formula used:**The formula of the second relation of the Newton’s law of motion is given by,

$ \Rightarrow s = ut + \dfrac{1}{2}a{t^2}$

Where displacement is s the initial velocity is u the total time taken is t and the acceleration is a.

The formula for the ${S_n}$ distance travelled in ${n^{th}}$ second is given by,

$ \Rightarrow {S_n} = u + \dfrac{a}{2}\left[ {2n - 1} \right]$

Where ${S_n}$ is the total distance travelled the initial velocity is u the acceleration on the body is a and n is the ${n^{th}}$ second.

**Complete step by step solution:**

It is given in the problem that a body falls from rest and in the last second of its fall it covers half of the total distance then we need to find the total time of the motion.

The formula for the ${S_n}$ distance travelled in ${n^{th}}$ second is given by,

$ \Rightarrow {S_n} = u + \dfrac{a}{2}\left[ {2n - 1} \right]$

Where ${S_n}$ is the total distance travelled the initial velocity is u the acceleration on the body is a and n is the ${n^{th}}$ second.

As the distance covered is half of the total distance covered in the last second and the acceleration is acceleration due to gravity therefore we get,

$ \Rightarrow {S_n} = u + \dfrac{a}{2}\left( {2n - 1} \right)$

$ \Rightarrow \dfrac{h}{2} = \dfrac{g}{2}\left( {2n - 1} \right)$

$ \Rightarrow h = g\left( {2n - 1} \right)$

$ \Rightarrow h = 10 \times \left( {2t - 1} \right)$………eq. (1)

The formula of the second relation of the Newton’s law of motion is given by,

$ \Rightarrow s = ut + \dfrac{1}{2}a{t^2}$

Where displacement is s the initial velocity is u the total time taken is t and the acceleration is a.

As the body is initially at rest and the acceleration due to gravity is $g = 10\dfrac{m}{{{s^2}}}$ therefore we get,

$ \Rightarrow s = ut + \dfrac{1}{2}a{t^2}$

$ \Rightarrow h = \dfrac{1}{2}\left( {10} \right){\left( t \right)^2}$………eq. (2)

Equating equation (1) and equation (2) we get.

$ \Rightarrow \dfrac{1}{2}{t^2} = \left( {2t - 1} \right)$

$ \Rightarrow {t^2} = 2\left( {2t - 1} \right)$

$ \Rightarrow {t^2} = 4t - 2$

$ \Rightarrow {t^2} - 4t + 2 = 0$

The formula for solving quadratic rule is given by,

$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$

Therefore solving the equation we get,

$ \Rightarrow {t^2} - 4t + 2 = 0$

Here $a = 1$, $b = - 4$ and $c = 2$.

$ \Rightarrow t = \dfrac{{ - \left( { - 4} \right) \pm \sqrt {{{\left( { - 4} \right)}^2} - 4 \cdot \left( 1 \right) \cdot \left( 2 \right)} }}{{2 \cdot \left( 1 \right)}}$

$ \Rightarrow t = \dfrac{{4 \pm \sqrt {16 - 8} }}{2}$

$ \Rightarrow t = \dfrac{{4 \pm \sqrt 8 }}{2}$

$ \Rightarrow t = \dfrac{{4 \pm 2\sqrt 2 }}{2}$

$ \Rightarrow t = 2 \pm \sqrt 2 $.

The total time taken is equal to $t = 2 \pm \sqrt 2 $s.

**The correct answer for this problem is option (D).**

**Note:**It is advisable to students to understand and remember the formulas of Newton’s law motion as it is helpful in solving problems of these kinds. It is given in the problem that the body covers half of the total distance in the last second of the fall of the body.

Recently Updated Pages

Write a composition in approximately 450 500 words class 10 english JEE_Main

Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main

What is the common property of the oxides CONO and class 10 chemistry JEE_Main

What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main

If four points A63B 35C4 2 and Dx3x are given in such class 10 maths JEE_Main

The area of square inscribed in a circle of diameter class 10 maths JEE_Main

Other Pages

The product C in the following sequence of a chemical class 12 chemistry JEE_Main

A stationary electric charge on a body produces A A class 11 physics JEE_Main

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

The atomic radii of fluorine and neon in angstrom unit class 11 chemistry JEE_MAIN

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

The power dissipated in a transmission wire carrying class 12 physics JEE_Main