
A body executes simple harmonic motion. The potential energy (PE), kinetic energy (KE) and total energy (TE) are measured as a function of displacement $x$. Which of the following statements is true?
A) TE is zero when $x = 0$
B) PE is maximum when $x = 0$
C) KE is maximum when $x = 0$
D) KE is maximum when $x$is maximum
Answer
218.1k+ views
Hint:
To find the values of energies of a particle doing SHM on its various positions asked in the question we can use the concept of energies of a particle doing SHM.
Formula used:
The potential energy
$U = \dfrac{1}{2}m{\omega ^2}{x^2}$
$Kinetic\,energy,\,K = \dfrac{1}{2}m{\omega ^2}({a^2} - {x^2})$
Complete step by step solution:
In the question, we have given that the potential, Kinetic and total energy are measured as $x$,
In order to know that a basic harmonic motion is an oscillating motion that is under a retarding force which is proportional to the degree of the displacement from an equilibrium position and the object's path must be straight, and a restoring force will be applied to the equilibrium point or mean position.
Kinetic energy is the energy that an object has as a result of the motion and is described as the effort required to move a mass-determined body from rest to the indicated velocity. The body keeps the kinetic energy it acquired throughout its acceleration unless its speed changes. While potential energy is the power that an object can store due to its position in relation to other things, internal tensions, electric charge, or other circumstances.
$Kinetic\,energy,\,K = \dfrac{1}{2}m{\omega ^2}({a^2} - {x^2})$
Kinetic energy is maximum when $x = 0$, then we have: ${K_{\max }} = \dfrac{1}{2}m{\omega ^2}{a^2}$
At $x = 0$, kinetic energy is maximum and potential energy is minimum
Similarly, potential energy when $x = 0$, we have:
$U = \dfrac{1}{2}m{\omega ^2}{x^2} \\$
$\Rightarrow U = 0 \\$
Therefore, kinetic energy will be maximum, potential energy will be minimum and the total energy is always constant.
Thus, the correct option is: (C) KE is maximum when $x = 0$
Note:
It should be noted that the kinetic energy and the potential energy are equivalent to each other. The total energy in the simple harmonic motion which is entirely kinetic in the middle and entirely potential in the extreme positions. And an energy in the simple harmonic motion which is an entire amount of the energy that is a particle which holds when engaging in simple harmonic motion.
To find the values of energies of a particle doing SHM on its various positions asked in the question we can use the concept of energies of a particle doing SHM.
Formula used:
The potential energy
$U = \dfrac{1}{2}m{\omega ^2}{x^2}$
$Kinetic\,energy,\,K = \dfrac{1}{2}m{\omega ^2}({a^2} - {x^2})$
Complete step by step solution:
In the question, we have given that the potential, Kinetic and total energy are measured as $x$,
In order to know that a basic harmonic motion is an oscillating motion that is under a retarding force which is proportional to the degree of the displacement from an equilibrium position and the object's path must be straight, and a restoring force will be applied to the equilibrium point or mean position.
Kinetic energy is the energy that an object has as a result of the motion and is described as the effort required to move a mass-determined body from rest to the indicated velocity. The body keeps the kinetic energy it acquired throughout its acceleration unless its speed changes. While potential energy is the power that an object can store due to its position in relation to other things, internal tensions, electric charge, or other circumstances.
$Kinetic\,energy,\,K = \dfrac{1}{2}m{\omega ^2}({a^2} - {x^2})$
Kinetic energy is maximum when $x = 0$, then we have: ${K_{\max }} = \dfrac{1}{2}m{\omega ^2}{a^2}$
At $x = 0$, kinetic energy is maximum and potential energy is minimum
Similarly, potential energy when $x = 0$, we have:
$U = \dfrac{1}{2}m{\omega ^2}{x^2} \\$
$\Rightarrow U = 0 \\$
Therefore, kinetic energy will be maximum, potential energy will be minimum and the total energy is always constant.
Thus, the correct option is: (C) KE is maximum when $x = 0$
Note:
It should be noted that the kinetic energy and the potential energy are equivalent to each other. The total energy in the simple harmonic motion which is entirely kinetic in the middle and entirely potential in the extreme positions. And an energy in the simple harmonic motion which is an entire amount of the energy that is a particle which holds when engaging in simple harmonic motion.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

