
A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s. Find acceleration and velocity of the body when the displacement is
(a) 5 cm
(b) 3 cm
(c) 0 cm
Answer
137.7k+ views
Hint: The simple harmonic motion is defined as a special type of periodic motion where the restoring force on the moving object is directly proportional, at every instant, to the displacement of the body.
Restoring force, F –
$
F \propto - x \\
F = - kx \\
$
k = constant.
Complete step by step answer:
Newton’s second law states the definition of force as –
$F = ma$
Acceleration is obtained by differentiating the displacement function twice.
We know that, $a = \dfrac{{{d^2}x}}{{d{t^2}}}$
Substituting in the equation of harmonic function –
$
F = - kx \\
\Rightarrow m\left( {\dfrac{{{d^2}x}}{{d{t^2}}}} \right) = - kx \\
\Rightarrow \dfrac{{{d^2}x}}{{d{t^2}}} = - \dfrac{k}{m}x \\
$
On solving the differential equation, we have the solution –
$x(t) = {c_1}\cos \left( {\omega t} \right) + {c_2}\sin \left( {\omega t} \right)$ where $\omega = \sqrt {\dfrac{k}{m}}$
Applying the initial condition: At $t = 0,x(t) = 0$
$
\Rightarrow x(t) = {c_1}\cos \left( 0 \right) + {c_2}\sin \left( 0 \right) \\
\Rightarrow 0 = {c_1} + 0 \\
\Rightarrow {c_1} = 0
$
Therefore,
$x(t) = A\sin \omega t$ with ${c_2} = A$, called the amplitude which means the maximum displacement about the mean position
On differentiating the equation once, we get the equation for velocity,
$
V = \dfrac{{dx}}{{dt}} = \dfrac{d}{{dx}}\left( {A\sin \omega t} \right) \\
\Rightarrow V = A\omega \cos \omega t
$
In trigonometry,
$
\Rightarrow {\sin ^2}\theta + {\cos ^2}\theta = 1 \\
\Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta }
$
Applying this identity in the above equation, we have –
$
V = A\omega \cos \omega t \\
\Rightarrow V = A\omega \sqrt {1 - {{\sin }^2}\omega t}
$
Taking the equation inside the square root,
$
V = \sqrt {{A^2}{\omega ^2} - {A^2}{\omega ^2}{{\sin }^2}\omega t} \\
\Rightarrow V = \sqrt {{A^2}{\omega ^2} - {\omega ^2}{x^2}} \because x = A\sin \omega t\& {x^2} = {A^2}{\sin ^2}\omega t \\
\Rightarrow V = \sqrt {{\omega ^2}\left( {{A^2} - {x^2}} \right)} \\
\Rightarrow V = \omega \sqrt {\left( {{A^2} - {x^2}} \right)}
$
On differentiating the equation again, we get the equation for acceleration,
$a = \dfrac{{{d^2}x}}{{d{t^2}}} = \dfrac{d}{{dt}}\left( {\dfrac{{dx}}{{dt}}} \right) = \dfrac{d}{{dt}}\left( V \right)$
$V = A\omega \cos \omega t$
Substituting and differentiating, we get –
\[
a = \dfrac{{dV}}{{dt}} = \dfrac{d}{{dt}}\left( {A\omega \cos \omega t} \right) \\
\Rightarrow a = - A{\omega ^2}\sin \omega t \\
\Rightarrow a = - {\omega ^2}x\because x = A\sin \omega t
\]
In this problem,
Amplitude, $A = 5cm = 0.05m$
Time period, $T = 0.2s$
The angular velocity, $\omega $ is equal to the number of radians covered per unit time. Thus,
$
\Rightarrow \omega = \dfrac{{2\pi }}{T} \\
Here, \\
\Rightarrow \omega = \dfrac{{2\pi }}{{0.2}} = 10\pi
$
Now, let us consider each case for the displacements –
Case 1: When displacement is 5 cm
$x(t) = 5cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
\Rightarrow V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - {{0.05}^2}} \\
\Rightarrow V = 10\pi (0) = 0m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
\Rightarrow A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0.05 \\
\Rightarrow A = - 100 \times {\left( {3.14} \right)^2} \times 0.05 = - 49.298m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 0m{s^{ - 1}} \\
Acceleration,a = - 49.298m{s^{ - 2}} \\
$
Case 2: When displacement is 3 cm
$x(t) = 3cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - {{0.03}^2}} \\
\Rightarrow V = 10\pi \sqrt {0.0025 - 0.0009} \\
\Rightarrow V = 10\pi \sqrt {0.0016} \\
\Rightarrow V = 10\pi \times 0.04 = 1.256m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0.03 \\
\Rightarrow A = - 100 \times {\left( {3.14} \right)^2} \times 0.03 = - 29.578m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 1.256m{s^{ - 1}} \\
Acceleration,a = - 29.578m{s^{ - 2}} \\
$
Case 3: When displacement is 0 cm
$x(t) = 0cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - 0} \\
\Rightarrow V = 10\pi \sqrt {0.0025} \\
\Rightarrow V = 10\pi \times 0.05 = 1.57m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0 \\
\Rightarrow A = 0m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 1.57m{s^{ - 1}} \\
Acceleration,a = 0m{s^{ - 2}} \\
$
Note: In actual, the equation for simple harmonic motion is –
$x(t) = A\sin \left( {\omega t + \phi } \right)$ where $\phi $ is called the initial phase angle, which represents the angle at which we are starting the vibration.
In general cases, there is a common assumption that the initial phase angle is 0.
Hence, in the question, it is directly taken as:
$x(t) = A\sin \left( {\omega t + 0} \right) = A\sin \omega t$
Restoring force, F –
$
F \propto - x \\
F = - kx \\
$
k = constant.
Complete step by step answer:
Newton’s second law states the definition of force as –
$F = ma$
Acceleration is obtained by differentiating the displacement function twice.
We know that, $a = \dfrac{{{d^2}x}}{{d{t^2}}}$
Substituting in the equation of harmonic function –
$
F = - kx \\
\Rightarrow m\left( {\dfrac{{{d^2}x}}{{d{t^2}}}} \right) = - kx \\
\Rightarrow \dfrac{{{d^2}x}}{{d{t^2}}} = - \dfrac{k}{m}x \\
$
On solving the differential equation, we have the solution –
$x(t) = {c_1}\cos \left( {\omega t} \right) + {c_2}\sin \left( {\omega t} \right)$ where $\omega = \sqrt {\dfrac{k}{m}}$
Applying the initial condition: At $t = 0,x(t) = 0$
$
\Rightarrow x(t) = {c_1}\cos \left( 0 \right) + {c_2}\sin \left( 0 \right) \\
\Rightarrow 0 = {c_1} + 0 \\
\Rightarrow {c_1} = 0
$
Therefore,
$x(t) = A\sin \omega t$ with ${c_2} = A$, called the amplitude which means the maximum displacement about the mean position
On differentiating the equation once, we get the equation for velocity,
$
V = \dfrac{{dx}}{{dt}} = \dfrac{d}{{dx}}\left( {A\sin \omega t} \right) \\
\Rightarrow V = A\omega \cos \omega t
$
In trigonometry,
$
\Rightarrow {\sin ^2}\theta + {\cos ^2}\theta = 1 \\
\Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta }
$
Applying this identity in the above equation, we have –
$
V = A\omega \cos \omega t \\
\Rightarrow V = A\omega \sqrt {1 - {{\sin }^2}\omega t}
$
Taking the equation inside the square root,
$
V = \sqrt {{A^2}{\omega ^2} - {A^2}{\omega ^2}{{\sin }^2}\omega t} \\
\Rightarrow V = \sqrt {{A^2}{\omega ^2} - {\omega ^2}{x^2}} \because x = A\sin \omega t\& {x^2} = {A^2}{\sin ^2}\omega t \\
\Rightarrow V = \sqrt {{\omega ^2}\left( {{A^2} - {x^2}} \right)} \\
\Rightarrow V = \omega \sqrt {\left( {{A^2} - {x^2}} \right)}
$
On differentiating the equation again, we get the equation for acceleration,
$a = \dfrac{{{d^2}x}}{{d{t^2}}} = \dfrac{d}{{dt}}\left( {\dfrac{{dx}}{{dt}}} \right) = \dfrac{d}{{dt}}\left( V \right)$
$V = A\omega \cos \omega t$
Substituting and differentiating, we get –
\[
a = \dfrac{{dV}}{{dt}} = \dfrac{d}{{dt}}\left( {A\omega \cos \omega t} \right) \\
\Rightarrow a = - A{\omega ^2}\sin \omega t \\
\Rightarrow a = - {\omega ^2}x\because x = A\sin \omega t
\]
In this problem,
Amplitude, $A = 5cm = 0.05m$
Time period, $T = 0.2s$
The angular velocity, $\omega $ is equal to the number of radians covered per unit time. Thus,
$
\Rightarrow \omega = \dfrac{{2\pi }}{T} \\
Here, \\
\Rightarrow \omega = \dfrac{{2\pi }}{{0.2}} = 10\pi
$
Now, let us consider each case for the displacements –
Case 1: When displacement is 5 cm
$x(t) = 5cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
\Rightarrow V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - {{0.05}^2}} \\
\Rightarrow V = 10\pi (0) = 0m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
\Rightarrow A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0.05 \\
\Rightarrow A = - 100 \times {\left( {3.14} \right)^2} \times 0.05 = - 49.298m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 0m{s^{ - 1}} \\
Acceleration,a = - 49.298m{s^{ - 2}} \\
$
Case 2: When displacement is 3 cm
$x(t) = 3cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - {{0.03}^2}} \\
\Rightarrow V = 10\pi \sqrt {0.0025 - 0.0009} \\
\Rightarrow V = 10\pi \sqrt {0.0016} \\
\Rightarrow V = 10\pi \times 0.04 = 1.256m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0.03 \\
\Rightarrow A = - 100 \times {\left( {3.14} \right)^2} \times 0.03 = - 29.578m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 1.256m{s^{ - 1}} \\
Acceleration,a = - 29.578m{s^{ - 2}} \\
$
Case 3: When displacement is 0 cm
$x(t) = 0cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - 0} \\
\Rightarrow V = 10\pi \sqrt {0.0025} \\
\Rightarrow V = 10\pi \times 0.05 = 1.57m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0 \\
\Rightarrow A = 0m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 1.57m{s^{ - 1}} \\
Acceleration,a = 0m{s^{ - 2}} \\
$
Note: In actual, the equation for simple harmonic motion is –
$x(t) = A\sin \left( {\omega t + \phi } \right)$ where $\phi $ is called the initial phase angle, which represents the angle at which we are starting the vibration.
In general cases, there is a common assumption that the initial phase angle is 0.
Hence, in the question, it is directly taken as:
$x(t) = A\sin \left( {\omega t + 0} \right) = A\sin \omega t$
Recently Updated Pages
COM of Semicircular Ring Important Concepts and Tips for JEE

Geostationary Satellites and Geosynchronous Satellites for JEE

Current Loop as Magnetic Dipole Important Concepts for JEE

Electromagnetic Waves Chapter for JEE Main Physics

Structure of Atom: Key Models, Subatomic Particles, and Quantum Numbers

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
