
A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s. Find acceleration and velocity of the body when the displacement is
(a) 5 cm
(b) 3 cm
(c) 0 cm
Answer
218.7k+ views
Hint: The simple harmonic motion is defined as a special type of periodic motion where the restoring force on the moving object is directly proportional, at every instant, to the displacement of the body.
Restoring force, F –
$
F \propto - x \\
F = - kx \\
$
k = constant.
Complete step by step answer:
Newton’s second law states the definition of force as –
$F = ma$
Acceleration is obtained by differentiating the displacement function twice.
We know that, $a = \dfrac{{{d^2}x}}{{d{t^2}}}$
Substituting in the equation of harmonic function –
$
F = - kx \\
\Rightarrow m\left( {\dfrac{{{d^2}x}}{{d{t^2}}}} \right) = - kx \\
\Rightarrow \dfrac{{{d^2}x}}{{d{t^2}}} = - \dfrac{k}{m}x \\
$
On solving the differential equation, we have the solution –
$x(t) = {c_1}\cos \left( {\omega t} \right) + {c_2}\sin \left( {\omega t} \right)$ where $\omega = \sqrt {\dfrac{k}{m}}$
Applying the initial condition: At $t = 0,x(t) = 0$
$
\Rightarrow x(t) = {c_1}\cos \left( 0 \right) + {c_2}\sin \left( 0 \right) \\
\Rightarrow 0 = {c_1} + 0 \\
\Rightarrow {c_1} = 0
$
Therefore,
$x(t) = A\sin \omega t$ with ${c_2} = A$, called the amplitude which means the maximum displacement about the mean position
On differentiating the equation once, we get the equation for velocity,
$
V = \dfrac{{dx}}{{dt}} = \dfrac{d}{{dx}}\left( {A\sin \omega t} \right) \\
\Rightarrow V = A\omega \cos \omega t
$
In trigonometry,
$
\Rightarrow {\sin ^2}\theta + {\cos ^2}\theta = 1 \\
\Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta }
$
Applying this identity in the above equation, we have –
$
V = A\omega \cos \omega t \\
\Rightarrow V = A\omega \sqrt {1 - {{\sin }^2}\omega t}
$
Taking the equation inside the square root,
$
V = \sqrt {{A^2}{\omega ^2} - {A^2}{\omega ^2}{{\sin }^2}\omega t} \\
\Rightarrow V = \sqrt {{A^2}{\omega ^2} - {\omega ^2}{x^2}} \because x = A\sin \omega t\& {x^2} = {A^2}{\sin ^2}\omega t \\
\Rightarrow V = \sqrt {{\omega ^2}\left( {{A^2} - {x^2}} \right)} \\
\Rightarrow V = \omega \sqrt {\left( {{A^2} - {x^2}} \right)}
$
On differentiating the equation again, we get the equation for acceleration,
$a = \dfrac{{{d^2}x}}{{d{t^2}}} = \dfrac{d}{{dt}}\left( {\dfrac{{dx}}{{dt}}} \right) = \dfrac{d}{{dt}}\left( V \right)$
$V = A\omega \cos \omega t$
Substituting and differentiating, we get –
\[
a = \dfrac{{dV}}{{dt}} = \dfrac{d}{{dt}}\left( {A\omega \cos \omega t} \right) \\
\Rightarrow a = - A{\omega ^2}\sin \omega t \\
\Rightarrow a = - {\omega ^2}x\because x = A\sin \omega t
\]
In this problem,
Amplitude, $A = 5cm = 0.05m$
Time period, $T = 0.2s$
The angular velocity, $\omega $ is equal to the number of radians covered per unit time. Thus,
$
\Rightarrow \omega = \dfrac{{2\pi }}{T} \\
Here, \\
\Rightarrow \omega = \dfrac{{2\pi }}{{0.2}} = 10\pi
$
Now, let us consider each case for the displacements –
Case 1: When displacement is 5 cm
$x(t) = 5cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
\Rightarrow V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - {{0.05}^2}} \\
\Rightarrow V = 10\pi (0) = 0m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
\Rightarrow A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0.05 \\
\Rightarrow A = - 100 \times {\left( {3.14} \right)^2} \times 0.05 = - 49.298m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 0m{s^{ - 1}} \\
Acceleration,a = - 49.298m{s^{ - 2}} \\
$
Case 2: When displacement is 3 cm
$x(t) = 3cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - {{0.03}^2}} \\
\Rightarrow V = 10\pi \sqrt {0.0025 - 0.0009} \\
\Rightarrow V = 10\pi \sqrt {0.0016} \\
\Rightarrow V = 10\pi \times 0.04 = 1.256m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0.03 \\
\Rightarrow A = - 100 \times {\left( {3.14} \right)^2} \times 0.03 = - 29.578m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 1.256m{s^{ - 1}} \\
Acceleration,a = - 29.578m{s^{ - 2}} \\
$
Case 3: When displacement is 0 cm
$x(t) = 0cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - 0} \\
\Rightarrow V = 10\pi \sqrt {0.0025} \\
\Rightarrow V = 10\pi \times 0.05 = 1.57m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0 \\
\Rightarrow A = 0m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 1.57m{s^{ - 1}} \\
Acceleration,a = 0m{s^{ - 2}} \\
$
Note: In actual, the equation for simple harmonic motion is –
$x(t) = A\sin \left( {\omega t + \phi } \right)$ where $\phi $ is called the initial phase angle, which represents the angle at which we are starting the vibration.
In general cases, there is a common assumption that the initial phase angle is 0.
Hence, in the question, it is directly taken as:
$x(t) = A\sin \left( {\omega t + 0} \right) = A\sin \omega t$
Restoring force, F –
$
F \propto - x \\
F = - kx \\
$
k = constant.
Complete step by step answer:
Newton’s second law states the definition of force as –
$F = ma$
Acceleration is obtained by differentiating the displacement function twice.
We know that, $a = \dfrac{{{d^2}x}}{{d{t^2}}}$
Substituting in the equation of harmonic function –
$
F = - kx \\
\Rightarrow m\left( {\dfrac{{{d^2}x}}{{d{t^2}}}} \right) = - kx \\
\Rightarrow \dfrac{{{d^2}x}}{{d{t^2}}} = - \dfrac{k}{m}x \\
$
On solving the differential equation, we have the solution –
$x(t) = {c_1}\cos \left( {\omega t} \right) + {c_2}\sin \left( {\omega t} \right)$ where $\omega = \sqrt {\dfrac{k}{m}}$
Applying the initial condition: At $t = 0,x(t) = 0$
$
\Rightarrow x(t) = {c_1}\cos \left( 0 \right) + {c_2}\sin \left( 0 \right) \\
\Rightarrow 0 = {c_1} + 0 \\
\Rightarrow {c_1} = 0
$
Therefore,
$x(t) = A\sin \omega t$ with ${c_2} = A$, called the amplitude which means the maximum displacement about the mean position
On differentiating the equation once, we get the equation for velocity,
$
V = \dfrac{{dx}}{{dt}} = \dfrac{d}{{dx}}\left( {A\sin \omega t} \right) \\
\Rightarrow V = A\omega \cos \omega t
$
In trigonometry,
$
\Rightarrow {\sin ^2}\theta + {\cos ^2}\theta = 1 \\
\Rightarrow \cos \theta = \sqrt {1 - {{\sin }^2}\theta }
$
Applying this identity in the above equation, we have –
$
V = A\omega \cos \omega t \\
\Rightarrow V = A\omega \sqrt {1 - {{\sin }^2}\omega t}
$
Taking the equation inside the square root,
$
V = \sqrt {{A^2}{\omega ^2} - {A^2}{\omega ^2}{{\sin }^2}\omega t} \\
\Rightarrow V = \sqrt {{A^2}{\omega ^2} - {\omega ^2}{x^2}} \because x = A\sin \omega t\& {x^2} = {A^2}{\sin ^2}\omega t \\
\Rightarrow V = \sqrt {{\omega ^2}\left( {{A^2} - {x^2}} \right)} \\
\Rightarrow V = \omega \sqrt {\left( {{A^2} - {x^2}} \right)}
$
On differentiating the equation again, we get the equation for acceleration,
$a = \dfrac{{{d^2}x}}{{d{t^2}}} = \dfrac{d}{{dt}}\left( {\dfrac{{dx}}{{dt}}} \right) = \dfrac{d}{{dt}}\left( V \right)$
$V = A\omega \cos \omega t$
Substituting and differentiating, we get –
\[
a = \dfrac{{dV}}{{dt}} = \dfrac{d}{{dt}}\left( {A\omega \cos \omega t} \right) \\
\Rightarrow a = - A{\omega ^2}\sin \omega t \\
\Rightarrow a = - {\omega ^2}x\because x = A\sin \omega t
\]
In this problem,
Amplitude, $A = 5cm = 0.05m$
Time period, $T = 0.2s$
The angular velocity, $\omega $ is equal to the number of radians covered per unit time. Thus,
$
\Rightarrow \omega = \dfrac{{2\pi }}{T} \\
Here, \\
\Rightarrow \omega = \dfrac{{2\pi }}{{0.2}} = 10\pi
$
Now, let us consider each case for the displacements –
Case 1: When displacement is 5 cm
$x(t) = 5cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
\Rightarrow V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - {{0.05}^2}} \\
\Rightarrow V = 10\pi (0) = 0m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
\Rightarrow A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0.05 \\
\Rightarrow A = - 100 \times {\left( {3.14} \right)^2} \times 0.05 = - 49.298m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 0m{s^{ - 1}} \\
Acceleration,a = - 49.298m{s^{ - 2}} \\
$
Case 2: When displacement is 3 cm
$x(t) = 3cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - {{0.03}^2}} \\
\Rightarrow V = 10\pi \sqrt {0.0025 - 0.0009} \\
\Rightarrow V = 10\pi \sqrt {0.0016} \\
\Rightarrow V = 10\pi \times 0.04 = 1.256m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0.03 \\
\Rightarrow A = - 100 \times {\left( {3.14} \right)^2} \times 0.03 = - 29.578m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 1.256m{s^{ - 1}} \\
Acceleration,a = - 29.578m{s^{ - 2}} \\
$
Case 3: When displacement is 0 cm
$x(t) = 0cm$
Velocity, $V = \dfrac{{dx}}{{dt}} = \omega \sqrt {{A^2} - {x^2}} $
Substituting,
$
V = \omega \sqrt {{A^2} - {x^2}} \\
\Rightarrow V = 10\pi \sqrt {{{0.05}^2} - 0} \\
\Rightarrow V = 10\pi \sqrt {0.0025} \\
\Rightarrow V = 10\pi \times 0.05 = 1.57m{s^{ - 1}} \\
$
Acceleration, $A = \dfrac{{{d^2}x}}{{d{t^2}}} = - {\omega ^2}x$
Substituting,
$
A = - {\omega ^2}x \\
\Rightarrow A = - {\left( {10\pi } \right)^2} \times 0 \\
\Rightarrow A = 0m{s^{ - 2}} \\
$
Thus,
$
Velocity,V = 1.57m{s^{ - 1}} \\
Acceleration,a = 0m{s^{ - 2}} \\
$
Note: In actual, the equation for simple harmonic motion is –
$x(t) = A\sin \left( {\omega t + \phi } \right)$ where $\phi $ is called the initial phase angle, which represents the angle at which we are starting the vibration.
In general cases, there is a common assumption that the initial phase angle is 0.
Hence, in the question, it is directly taken as:
$x(t) = A\sin \left( {\omega t + 0} \right) = A\sin \omega t$
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

