
A block of 200 g mass moves with a uniform speed in a horizontal circular groove, with vertical sidewalls of a radius of 20 cm. If the block takes 40 s to complete one round, the normal force by the sidewalls of the groove is:
A. \[6.28 \times {10^{ - 3}}{\text{ N}}\]
B. \[0.0314{\text{ N}}\]
C. \[9.859 \times {10^{ - 2}}{\text{ N}}\]
D. \[9.859 \times {10^{ - 4}}{\text{ N}}\]
Answer
162.3k+ views
Hint: In this question, we need to find the normal force by the sidewalls of the groove. For this, we have to use the formula of normal force for finding the force exerted by the sidewalls of the groove.
Formula used:
We will use the following formula of force.
\[F = m{\omega ^2}R\]
Here, \[F\] is a normal force, \[m\] is the mass of an object, \[\omega \] is the angular frequency and \[R\] is the radius.
Complete step by step solution:
We know that the normal force will offer the essential centripetal force.
So, the normal force can be calculated as
\[F = m{\omega ^2}R\]
Let us first convert all the parameters into SI units.
We know that \[1\text{ kg}=1000\text{ g}\]
Here, \[m = 200g \Rightarrow \dfrac{{200}}{{1000}} = 0.2{\text{ kg}}\]
Also, \[1\text{ m}=100\text{ cm}\]
So, \[R = 20cm \Rightarrow \dfrac{{20}}{{100}} = 0.2{\text{ m}}\]
Let us find the angular frequency.
\[\omega = \dfrac{{2\pi }}{T} \Rightarrow \dfrac{{2\pi }}{{40}} = \dfrac{\pi }{{20}}\]
So, we get
\[F = \left( {0.2} \right) \times {\left( {\dfrac{\pi }{{20}}} \right)^2} \times 0.2\]
\[\Rightarrow F = \left( {0.2} \right) \times \left( {\dfrac{{3.14 \times 3.14}}{{20}}} \right) \times 0.2\]
By simplifying further, we get
\[\therefore F = 9.859 \times {10^{ - 4}}{\text{ N}}\]
Hence, we can say that the normal force by the sidewalls of the groove is \[9.859 \times {10^{ - 4}}{\text{ N}}\]
Therefore, the correct option is (D).
Note:The normal force is the force exerted by surfaces to avoid solid objects from passing through them. A contact force is a normal force. A normal force cannot be exerted on two surfaces that are not in interaction.
Formula used:
We will use the following formula of force.
\[F = m{\omega ^2}R\]
Here, \[F\] is a normal force, \[m\] is the mass of an object, \[\omega \] is the angular frequency and \[R\] is the radius.
Complete step by step solution:
We know that the normal force will offer the essential centripetal force.
So, the normal force can be calculated as
\[F = m{\omega ^2}R\]
Let us first convert all the parameters into SI units.
We know that \[1\text{ kg}=1000\text{ g}\]
Here, \[m = 200g \Rightarrow \dfrac{{200}}{{1000}} = 0.2{\text{ kg}}\]
Also, \[1\text{ m}=100\text{ cm}\]
So, \[R = 20cm \Rightarrow \dfrac{{20}}{{100}} = 0.2{\text{ m}}\]
Let us find the angular frequency.
\[\omega = \dfrac{{2\pi }}{T} \Rightarrow \dfrac{{2\pi }}{{40}} = \dfrac{\pi }{{20}}\]
So, we get
\[F = \left( {0.2} \right) \times {\left( {\dfrac{\pi }{{20}}} \right)^2} \times 0.2\]
\[\Rightarrow F = \left( {0.2} \right) \times \left( {\dfrac{{3.14 \times 3.14}}{{20}}} \right) \times 0.2\]
By simplifying further, we get
\[\therefore F = 9.859 \times {10^{ - 4}}{\text{ N}}\]
Hence, we can say that the normal force by the sidewalls of the groove is \[9.859 \times {10^{ - 4}}{\text{ N}}\]
Therefore, the correct option is (D).
Note:The normal force is the force exerted by surfaces to avoid solid objects from passing through them. A contact force is a normal force. A normal force cannot be exerted on two surfaces that are not in interaction.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
