Answer
Verified
96k+ views
Hint: Here we are given two black bodies that emit different powers at different temperatures. We have to compare the surface area of the two black bodies when the surrounding of the black bodies is at normal temperature and pressure. We have to consider one of the laws for black body radiation to solve this problem.
Formula used
$W = e\sigma A{T^4}$
Where, $W$ stands for the power emitted by the black body, $e$ stands for the emissivity of the black body, $\sigma $ stands for the Stefan’s constant, $A$ stands for the surface area of the black body, and $T$ stands for the temperature of the black body.
Complete step by step solution:
According to the Stefan-Boltzmann law, the amount of power radiated per unit time for a unit area of the black body is directly proportional to the fourth power of the temperature.
It can be expressed as,
$W = e\sigma A{T^4}$
The radiation emitted by the first black body can be written as,
${W_1} = e\sigma {A_1}T_1^4$
Where ${T_0}$is the temperature of the surrounding.
The radiation emitted by the second black body can be written as,
${W_2} = e\sigma {A_2}T_2^4$
Comparing the powers of the two black bodies,
$\dfrac{{{W_1}}}{{{W_2}}} = \dfrac{{e\sigma {A_1}T_1^4}}{{e\sigma {A_2}T_2^4}}$
Cancelling out the same values, we get
$\dfrac{{{W_1}}}{{{W_2}}} = \dfrac{{{A_1}T_1^4}}{{{A_2}T_2^4}}$
From this we can write the comparison of the areas as,
$\dfrac{{{A_1}}}{{{A_2}}} = \dfrac{{{W_1}T_2^4}}{{{W_2}T_1^4}}$
From the question, we know that
${W_1} = 20W$
${W_2} = 15W$
${T_1} = {227^ \circ }C = 500K$
${T_2} = {277^ \circ }C = 550K$
(To convert degree Celsius to Kelvin we have to add the$273K$with the given temperature.)
Substituting the values in the above equation, we get that,
$\dfrac{{{A_1}}}{{{A_2}}} = \dfrac{{20 \times {{550}^4}}}{{15 \times {{500}^4}}}$
After solving, we get the ratio as, $2:1$
The correct answer is not given in the option.
Note:
A blackbody will absorb all radiation incident on it without considering the frequency or the wavelength of the incident radiation. Since it absorbs all the radiations, it will appear black in color hence it is called a black body. The black body will also emit radiations of a certain frequency which are called blackbody radiations.
Formula used
$W = e\sigma A{T^4}$
Where, $W$ stands for the power emitted by the black body, $e$ stands for the emissivity of the black body, $\sigma $ stands for the Stefan’s constant, $A$ stands for the surface area of the black body, and $T$ stands for the temperature of the black body.
Complete step by step solution:
According to the Stefan-Boltzmann law, the amount of power radiated per unit time for a unit area of the black body is directly proportional to the fourth power of the temperature.
It can be expressed as,
$W = e\sigma A{T^4}$
The radiation emitted by the first black body can be written as,
${W_1} = e\sigma {A_1}T_1^4$
Where ${T_0}$is the temperature of the surrounding.
The radiation emitted by the second black body can be written as,
${W_2} = e\sigma {A_2}T_2^4$
Comparing the powers of the two black bodies,
$\dfrac{{{W_1}}}{{{W_2}}} = \dfrac{{e\sigma {A_1}T_1^4}}{{e\sigma {A_2}T_2^4}}$
Cancelling out the same values, we get
$\dfrac{{{W_1}}}{{{W_2}}} = \dfrac{{{A_1}T_1^4}}{{{A_2}T_2^4}}$
From this we can write the comparison of the areas as,
$\dfrac{{{A_1}}}{{{A_2}}} = \dfrac{{{W_1}T_2^4}}{{{W_2}T_1^4}}$
From the question, we know that
${W_1} = 20W$
${W_2} = 15W$
${T_1} = {227^ \circ }C = 500K$
${T_2} = {277^ \circ }C = 550K$
(To convert degree Celsius to Kelvin we have to add the$273K$with the given temperature.)
Substituting the values in the above equation, we get that,
$\dfrac{{{A_1}}}{{{A_2}}} = \dfrac{{20 \times {{550}^4}}}{{15 \times {{500}^4}}}$
After solving, we get the ratio as, $2:1$
The correct answer is not given in the option.
Note:
A blackbody will absorb all radiation incident on it without considering the frequency or the wavelength of the incident radiation. Since it absorbs all the radiations, it will appear black in color hence it is called a black body. The black body will also emit radiations of a certain frequency which are called blackbody radiations.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
Derive an expression for maximum speed of a car on class 11 physics JEE_Main
If the number of integral terms in the expansion of class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
A flask contains a mixture of compound A and B Both class 12 chemistry JEE_Main
When three capacitors of equal capacities are connected class 12 physics JEE_Main