
A ball weighing $10g$ is moving with a velocity of $90m{s^{ - 1}}$. If the uncertainty in its velocity is $5$ percent, then the uncertainty in its position is _______$ \times {10^{ - 33}}m$.
Answer
163.8k+ views
Hint: In order to solve this question, we will first find the value of uncertainty in the velocity of the ball, and then using the Heisenberg uncertainty principle we will solve to find the uncertainty in the position of the ball.
Formula used:
The Heisenberg uncertainty principle is related by $\Delta x.\Delta {p_x} \geqslant \dfrac{h}{{4\pi }}$ where, $\Delta x,\Delta {p_x}$ is the uncertainty in the position and momentum, $h = 6.626 \times {10^{ - 34}}Js$ is known as the Planck’s constant.
Complete answer:
We have given that mass of the ball is $m = 10g = 0.01kg$
velocity of the ball is $v = 90m{s^{ - 1}}$ with an uncertainty of $5$ percent which means
$
\Delta v = \dfrac{5}{{100}} \times v \\
\Delta v = 4.5m{s^{ - 1}} \\
$
Planck’s constant value is $h = 6.626 \times {10^{ - 34}}Js$ so , using these values and the Heisenberg uncertainty principle formula $\Delta x.\Delta {p_x} \geqslant \dfrac{h}{{4\pi }}$ we have,
$\Delta x.\Delta {p_x} \geqslant \dfrac{{6.626 \times {{10}^{ - 34}}}}{{4(3.14)}}$
as we know the momentum of a body is the product of mass and its velocity so uncertainty in momentum can be written in terms of mass multiplied by the uncertainty in the velocity so, we can write $\Delta {p_x} = m.\Delta v$ so, on putting the values we get,
$
\Delta x.0.01(4.5) \geqslant \dfrac{{6.626 \times {{10}^{ - 34}}}}{{4(3.14)}} \\
\Delta x \geqslant 1.17 \times {10^{ - 33}}m \\
$
On comparing this value with the given form we see that the blank place of ___$ \times {10^{ - 33}}m$ has a value of $1.17$
Hence, the uncertainty in the position of the ball is $1.17 \times {10^{ - 33}}m$
Note: In Heisenberg, uncertainty principle formula the direction in which uncertainty in position is measured then the uncertainty in the momentum is also measured in the same direction, and the basic unit of conversion here is used as $1kg = 1000g$.
Formula used:
The Heisenberg uncertainty principle is related by $\Delta x.\Delta {p_x} \geqslant \dfrac{h}{{4\pi }}$ where, $\Delta x,\Delta {p_x}$ is the uncertainty in the position and momentum, $h = 6.626 \times {10^{ - 34}}Js$ is known as the Planck’s constant.
Complete answer:
We have given that mass of the ball is $m = 10g = 0.01kg$
velocity of the ball is $v = 90m{s^{ - 1}}$ with an uncertainty of $5$ percent which means
$
\Delta v = \dfrac{5}{{100}} \times v \\
\Delta v = 4.5m{s^{ - 1}} \\
$
Planck’s constant value is $h = 6.626 \times {10^{ - 34}}Js$ so , using these values and the Heisenberg uncertainty principle formula $\Delta x.\Delta {p_x} \geqslant \dfrac{h}{{4\pi }}$ we have,
$\Delta x.\Delta {p_x} \geqslant \dfrac{{6.626 \times {{10}^{ - 34}}}}{{4(3.14)}}$
as we know the momentum of a body is the product of mass and its velocity so uncertainty in momentum can be written in terms of mass multiplied by the uncertainty in the velocity so, we can write $\Delta {p_x} = m.\Delta v$ so, on putting the values we get,
$
\Delta x.0.01(4.5) \geqslant \dfrac{{6.626 \times {{10}^{ - 34}}}}{{4(3.14)}} \\
\Delta x \geqslant 1.17 \times {10^{ - 33}}m \\
$
On comparing this value with the given form we see that the blank place of ___$ \times {10^{ - 33}}m$ has a value of $1.17$
Hence, the uncertainty in the position of the ball is $1.17 \times {10^{ - 33}}m$
Note: In Heisenberg, uncertainty principle formula the direction in which uncertainty in position is measured then the uncertainty in the momentum is also measured in the same direction, and the basic unit of conversion here is used as $1kg = 1000g$.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE
