
A ball is dropped from the top of a building of height $80m$. At the same instant another ball is thrown upwards with speed $50m/s$ from the bottom of the building. The time at which balls meet is
(A) $1.6s$
(B) $5s$
(C) $8s$
(D) $10s$
Answer
218.7k+ views
Hint The second equation of motion can be used to solve the given question. The height of the building is constant. Thus equating the distances covered by both balls can give the time at which they meet.
Formula used:
$s = ut + \dfrac{1}{2}a{t^2}$
Where $s$ is the distance covered by the body.
$u$ is the initial velocity of the body.
$v$ is the final velocity of the body.
$a$ is the acceleration.
$t$ is the time taken.
Complete Step by step solution
It is given in the question that,
The height of the building, $h = 80m$
Ball A is dropped from the top of the building with initial velocity of, ${u_A} = 0m/s$
Ball B is thrown upwards from the bottom of the building with initial velocity of, ${u_B} = 50m/s$
We know that the only force acting here is gravity therefore the acceleration of both balls is $g = 9.8m/s$ in the downward direction.
When the balls meet, the sum of the distances traveled by them totals to the height of the building.
Let, distance traveled by ball A be, ${s_A}$.
And the distance traveled by ball B be, ${s_B}$.
Then, $h = {s_A} + {s_B}$
From the second equation of motion,
$s = ut + \dfrac{1}{2}a{t^2}$
For ball A,
$u = 0$
$a = 9.8m{s^{ - 2}}$
Therefore,
${s_A} = 0 \times t + \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_A} = \dfrac{1}{2} \times 9.8{t^2}$
For ball B,
$u = 50m$
$a = - 9.8m/{s^2}$ (it is negative because the gravity tries to retard the motion of the ball)
Therefore,
${s_B} = 50 \times t - \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_B} = 50t - \dfrac{1}{2} \times 9.8 \times {t^2}$
Adding the distances covered by both balls,
$h = {s_A} + {s_B}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = 50t$
$t = \dfrac{{80}}{{50}} = 1.6$
The time when both balls meet is at$1.6\sec $.
Therefore option (1) is correct.
Note Velocity and acceleration are vector quantities. They can be positive or negative, depending on their directions. Velocity of an object may be negative when the object moves in the negative direction. But acceleration can be negative in two cases, first when the acceleration is in the opposite direction, or when the object is retarding.
Formula used:
$s = ut + \dfrac{1}{2}a{t^2}$
Where $s$ is the distance covered by the body.
$u$ is the initial velocity of the body.
$v$ is the final velocity of the body.
$a$ is the acceleration.
$t$ is the time taken.
Complete Step by step solution
It is given in the question that,
The height of the building, $h = 80m$
Ball A is dropped from the top of the building with initial velocity of, ${u_A} = 0m/s$
Ball B is thrown upwards from the bottom of the building with initial velocity of, ${u_B} = 50m/s$
We know that the only force acting here is gravity therefore the acceleration of both balls is $g = 9.8m/s$ in the downward direction.
When the balls meet, the sum of the distances traveled by them totals to the height of the building.
Let, distance traveled by ball A be, ${s_A}$.
And the distance traveled by ball B be, ${s_B}$.
Then, $h = {s_A} + {s_B}$
From the second equation of motion,
$s = ut + \dfrac{1}{2}a{t^2}$
For ball A,
$u = 0$
$a = 9.8m{s^{ - 2}}$
Therefore,
${s_A} = 0 \times t + \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_A} = \dfrac{1}{2} \times 9.8{t^2}$
For ball B,
$u = 50m$
$a = - 9.8m/{s^2}$ (it is negative because the gravity tries to retard the motion of the ball)
Therefore,
${s_B} = 50 \times t - \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_B} = 50t - \dfrac{1}{2} \times 9.8 \times {t^2}$
Adding the distances covered by both balls,
$h = {s_A} + {s_B}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = 50t$
$t = \dfrac{{80}}{{50}} = 1.6$
The time when both balls meet is at$1.6\sec $.
Therefore option (1) is correct.
Note Velocity and acceleration are vector quantities. They can be positive or negative, depending on their directions. Velocity of an object may be negative when the object moves in the negative direction. But acceleration can be negative in two cases, first when the acceleration is in the opposite direction, or when the object is retarding.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

