
A ball is dropped from the top of a building of height $80m$. At the same instant another ball is thrown upwards with speed $50m/s$ from the bottom of the building. The time at which balls meet is
(A) $1.6s$
(B) $5s$
(C) $8s$
(D) $10s$
Answer
147.3k+ views
Hint The second equation of motion can be used to solve the given question. The height of the building is constant. Thus equating the distances covered by both balls can give the time at which they meet.
Formula used:
$s = ut + \dfrac{1}{2}a{t^2}$
Where $s$ is the distance covered by the body.
$u$ is the initial velocity of the body.
$v$ is the final velocity of the body.
$a$ is the acceleration.
$t$ is the time taken.
Complete Step by step solution
It is given in the question that,
The height of the building, $h = 80m$
Ball A is dropped from the top of the building with initial velocity of, ${u_A} = 0m/s$
Ball B is thrown upwards from the bottom of the building with initial velocity of, ${u_B} = 50m/s$
We know that the only force acting here is gravity therefore the acceleration of both balls is $g = 9.8m/s$ in the downward direction.
When the balls meet, the sum of the distances traveled by them totals to the height of the building.
Let, distance traveled by ball A be, ${s_A}$.
And the distance traveled by ball B be, ${s_B}$.
Then, $h = {s_A} + {s_B}$
From the second equation of motion,
$s = ut + \dfrac{1}{2}a{t^2}$
For ball A,
$u = 0$
$a = 9.8m{s^{ - 2}}$
Therefore,
${s_A} = 0 \times t + \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_A} = \dfrac{1}{2} \times 9.8{t^2}$
For ball B,
$u = 50m$
$a = - 9.8m/{s^2}$ (it is negative because the gravity tries to retard the motion of the ball)
Therefore,
${s_B} = 50 \times t - \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_B} = 50t - \dfrac{1}{2} \times 9.8 \times {t^2}$
Adding the distances covered by both balls,
$h = {s_A} + {s_B}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = 50t$
$t = \dfrac{{80}}{{50}} = 1.6$
The time when both balls meet is at$1.6\sec $.
Therefore option (1) is correct.
Note Velocity and acceleration are vector quantities. They can be positive or negative, depending on their directions. Velocity of an object may be negative when the object moves in the negative direction. But acceleration can be negative in two cases, first when the acceleration is in the opposite direction, or when the object is retarding.
Formula used:
$s = ut + \dfrac{1}{2}a{t^2}$
Where $s$ is the distance covered by the body.
$u$ is the initial velocity of the body.
$v$ is the final velocity of the body.
$a$ is the acceleration.
$t$ is the time taken.
Complete Step by step solution
It is given in the question that,
The height of the building, $h = 80m$
Ball A is dropped from the top of the building with initial velocity of, ${u_A} = 0m/s$
Ball B is thrown upwards from the bottom of the building with initial velocity of, ${u_B} = 50m/s$
We know that the only force acting here is gravity therefore the acceleration of both balls is $g = 9.8m/s$ in the downward direction.
When the balls meet, the sum of the distances traveled by them totals to the height of the building.
Let, distance traveled by ball A be, ${s_A}$.
And the distance traveled by ball B be, ${s_B}$.
Then, $h = {s_A} + {s_B}$
From the second equation of motion,
$s = ut + \dfrac{1}{2}a{t^2}$
For ball A,
$u = 0$
$a = 9.8m{s^{ - 2}}$
Therefore,
${s_A} = 0 \times t + \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_A} = \dfrac{1}{2} \times 9.8{t^2}$
For ball B,
$u = 50m$
$a = - 9.8m/{s^2}$ (it is negative because the gravity tries to retard the motion of the ball)
Therefore,
${s_B} = 50 \times t - \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_B} = 50t - \dfrac{1}{2} \times 9.8 \times {t^2}$
Adding the distances covered by both balls,
$h = {s_A} + {s_B}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = 50t$
$t = \dfrac{{80}}{{50}} = 1.6$
The time when both balls meet is at$1.6\sec $.
Therefore option (1) is correct.
Note Velocity and acceleration are vector quantities. They can be positive or negative, depending on their directions. Velocity of an object may be negative when the object moves in the negative direction. But acceleration can be negative in two cases, first when the acceleration is in the opposite direction, or when the object is retarding.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
