
A ball is dropped from the top of a building of height $80m$. At the same instant another ball is thrown upwards with speed $50m/s$ from the bottom of the building. The time at which balls meet is
(A) $1.6s$
(B) $5s$
(C) $8s$
(D) $10s$
Answer
233.1k+ views
Hint The second equation of motion can be used to solve the given question. The height of the building is constant. Thus equating the distances covered by both balls can give the time at which they meet.
Formula used:
$s = ut + \dfrac{1}{2}a{t^2}$
Where $s$ is the distance covered by the body.
$u$ is the initial velocity of the body.
$v$ is the final velocity of the body.
$a$ is the acceleration.
$t$ is the time taken.
Complete Step by step solution
It is given in the question that,
The height of the building, $h = 80m$
Ball A is dropped from the top of the building with initial velocity of, ${u_A} = 0m/s$
Ball B is thrown upwards from the bottom of the building with initial velocity of, ${u_B} = 50m/s$
We know that the only force acting here is gravity therefore the acceleration of both balls is $g = 9.8m/s$ in the downward direction.
When the balls meet, the sum of the distances traveled by them totals to the height of the building.
Let, distance traveled by ball A be, ${s_A}$.
And the distance traveled by ball B be, ${s_B}$.
Then, $h = {s_A} + {s_B}$
From the second equation of motion,
$s = ut + \dfrac{1}{2}a{t^2}$
For ball A,
$u = 0$
$a = 9.8m{s^{ - 2}}$
Therefore,
${s_A} = 0 \times t + \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_A} = \dfrac{1}{2} \times 9.8{t^2}$
For ball B,
$u = 50m$
$a = - 9.8m/{s^2}$ (it is negative because the gravity tries to retard the motion of the ball)
Therefore,
${s_B} = 50 \times t - \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_B} = 50t - \dfrac{1}{2} \times 9.8 \times {t^2}$
Adding the distances covered by both balls,
$h = {s_A} + {s_B}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = 50t$
$t = \dfrac{{80}}{{50}} = 1.6$
The time when both balls meet is at$1.6\sec $.
Therefore option (1) is correct.
Note Velocity and acceleration are vector quantities. They can be positive or negative, depending on their directions. Velocity of an object may be negative when the object moves in the negative direction. But acceleration can be negative in two cases, first when the acceleration is in the opposite direction, or when the object is retarding.
Formula used:
$s = ut + \dfrac{1}{2}a{t^2}$
Where $s$ is the distance covered by the body.
$u$ is the initial velocity of the body.
$v$ is the final velocity of the body.
$a$ is the acceleration.
$t$ is the time taken.
Complete Step by step solution
It is given in the question that,
The height of the building, $h = 80m$
Ball A is dropped from the top of the building with initial velocity of, ${u_A} = 0m/s$
Ball B is thrown upwards from the bottom of the building with initial velocity of, ${u_B} = 50m/s$
We know that the only force acting here is gravity therefore the acceleration of both balls is $g = 9.8m/s$ in the downward direction.
When the balls meet, the sum of the distances traveled by them totals to the height of the building.
Let, distance traveled by ball A be, ${s_A}$.
And the distance traveled by ball B be, ${s_B}$.
Then, $h = {s_A} + {s_B}$
From the second equation of motion,
$s = ut + \dfrac{1}{2}a{t^2}$
For ball A,
$u = 0$
$a = 9.8m{s^{ - 2}}$
Therefore,
${s_A} = 0 \times t + \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_A} = \dfrac{1}{2} \times 9.8{t^2}$
For ball B,
$u = 50m$
$a = - 9.8m/{s^2}$ (it is negative because the gravity tries to retard the motion of the ball)
Therefore,
${s_B} = 50 \times t - \dfrac{1}{2} \times 9.8 \times {t^2}$
${s_B} = 50t - \dfrac{1}{2} \times 9.8 \times {t^2}$
Adding the distances covered by both balls,
$h = {s_A} + {s_B}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = \dfrac{1}{2} \times 9.8{t^2} + 50t - \dfrac{1}{2} \times 9.8{t^2}$
$80 = 50t$
$t = \dfrac{{80}}{{50}} = 1.6$
The time when both balls meet is at$1.6\sec $.
Therefore option (1) is correct.
Note Velocity and acceleration are vector quantities. They can be positive or negative, depending on their directions. Velocity of an object may be negative when the object moves in the negative direction. But acceleration can be negative in two cases, first when the acceleration is in the opposite direction, or when the object is retarding.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

