
$5g$ of water rises in the bore of the capillary tube when it is dipped in water. If the radius of the bore capillary tube is doubled, the mass of water that rises in the capillary tube above the outside water level is
(A) $1.5g$
(B) $10g$
(C) $5g$
(D) $15g$
Answer
147.3k+ views
Hint We know that the pressure at a point $A$ and $B$ in the diagram is the same. The pressure drop when going downwards through the meniscus from the point $A$ is $\dfrac{{2T}}{R}$, where $T$ is the surface tension of water and $R$ is the radius of the meniscus. This pressure drop is compensated by the pressure of the water column. Once we balance these, we will get our required solution.

Complete Step by step solution The height of the water column is calculated from the equation $\rho gh = \dfrac{{2T}}{R}$, where $\rho $ is the density of water, $h$ is the height of the water column, $g$ is the acceleration due to gravity, $T$ is the surface tension of water, and $R$ is the radius of the meniscus. Now from the figure, we get $\cos \theta = \dfrac{R}{r}$, i.e. $R = r\cos \theta $ such that the above equation becomes $\rho gh = \dfrac{{2T}}{{r\cos \theta }}$.
Also, we need to find the mass of the water column in terms of the height and radius of the cylinder. If $M$ be the mass of the water column, then $M = \rho V = \rho (\pi {r^2}h)$. Substituting $h$ from the above equation, we get $h = \dfrac{M}{{\rho \pi {r^2}}}$.
Replacing $h$, in the equation $\rho gh = \dfrac{{2T}}{{r\cos \theta }}$, we get $\dfrac{{\rho gM}}{{\rho \pi {r^2}}} = \dfrac{{2T}}{{r\cos \theta }}$.
Cancelling terms and taking all constants on one side we get, $\dfrac{M}{r} = \dfrac{{2\pi T}}{{g\cos \theta }} = const.$
Now according to the given question, the mass of water in the capillary tube is $5grams$, and the radius $r$ gets doubled.
$ \Rightarrow \dfrac{M}{r} = const. = \dfrac{{{M_1}}}{{{r_1}}} = \dfrac{{{M_2}}}{{{r_2}}}$,
$ \therefore \dfrac{{5grams}}{{{r_1}}} = \dfrac{{{M_2}}}{{2{r_1}}}$, or ${M_2} = 10grams$.
Therefore the correct option is an option (B).
Note Here we take the pressure drop as $\dfrac{{2T}}{R}$ and not $\dfrac{{4T}}{R}$, since the water column has only a single layer. In the case of bubbles, the pressure difference between the concave and the convex sides is $\dfrac{{4T}}{R}$. The concave side of a bubble has more pressure than the concave side.

Complete Step by step solution The height of the water column is calculated from the equation $\rho gh = \dfrac{{2T}}{R}$, where $\rho $ is the density of water, $h$ is the height of the water column, $g$ is the acceleration due to gravity, $T$ is the surface tension of water, and $R$ is the radius of the meniscus. Now from the figure, we get $\cos \theta = \dfrac{R}{r}$, i.e. $R = r\cos \theta $ such that the above equation becomes $\rho gh = \dfrac{{2T}}{{r\cos \theta }}$.
Also, we need to find the mass of the water column in terms of the height and radius of the cylinder. If $M$ be the mass of the water column, then $M = \rho V = \rho (\pi {r^2}h)$. Substituting $h$ from the above equation, we get $h = \dfrac{M}{{\rho \pi {r^2}}}$.
Replacing $h$, in the equation $\rho gh = \dfrac{{2T}}{{r\cos \theta }}$, we get $\dfrac{{\rho gM}}{{\rho \pi {r^2}}} = \dfrac{{2T}}{{r\cos \theta }}$.
Cancelling terms and taking all constants on one side we get, $\dfrac{M}{r} = \dfrac{{2\pi T}}{{g\cos \theta }} = const.$
Now according to the given question, the mass of water in the capillary tube is $5grams$, and the radius $r$ gets doubled.
$ \Rightarrow \dfrac{M}{r} = const. = \dfrac{{{M_1}}}{{{r_1}}} = \dfrac{{{M_2}}}{{{r_2}}}$,
$ \therefore \dfrac{{5grams}}{{{r_1}}} = \dfrac{{{M_2}}}{{2{r_1}}}$, or ${M_2} = 10grams$.
Therefore the correct option is an option (B).
Note Here we take the pressure drop as $\dfrac{{2T}}{R}$ and not $\dfrac{{4T}}{R}$, since the water column has only a single layer. In the case of bubbles, the pressure difference between the concave and the convex sides is $\dfrac{{4T}}{R}$. The concave side of a bubble has more pressure than the concave side.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
