
1 attometer is ………. Nanometre
(A) \[{10^{ - 9}}\]
(B) \[{10^{ - 8}}\]
(C) \[{10^{ - 7}}\]
(D) \[{10^9}\]
Answer
219k+ views
Hint: 1 attometre is equal to \[1 \times {10^{ - 18}}\] metres. 1 nanometer is equal to \[1 \times {10^{ - 9}}\] meters. Using the two relations, we can multiply or divide them using the unit as a guide.
Complete Step-by-Step solution:
By the phrasal of the question, we are to find the equivalent of 1 attometre (a unit of length) in nanometre. To do this, we can use the knowledge of their conversion to metres. What is meant by this is to use the knowledge of the equivalent of attometre to metre, and the equivalent of 1 nanometre to metres.
1 attometre is equal to \[1 \times {10^{ - 18}}\] metres i.e. \[1am = {10^{ - 18}}m\] and this also implies that \[{10^{18}}\] attometre makes 1 metre that is \[{10^{18}}am = 1m\]. This can be written as \[{10^{18}}\dfrac{{am}}{m}\]
1 nanometre is equal to \[1 \times {10^{ - 9}}\] metres i.e. \[1nm = {10^{ - 9}}m\] and this can be written as \[{10^{ - 9}}\dfrac{m}{{nm}}\]
Hence to find the equivalent of attometre in nanometre, we shall do as follows
\[{10^{ - 9}}\dfrac{m}{{nm}} \times {10^{18}}\dfrac{{am}}{m}\]
Hence, by computation and cancellation of \[m\], we have
\[{10^9}\dfrac{{am}}{{nm}}\]
Then this means that \[{10^9}\] is equal to 1 nm.
Thus, by inverting \[{10^9}\dfrac{{am}}{{nm}}\], we have
\[\dfrac{1}{{{{10}^9}}}\dfrac{{nm}}{{am}}\] which is equivalent to \[{10^{ - 9}}\dfrac{{am}}{{nm}}\]. This implies that the \[{10^{ - 9}}\] nanometre makes 1 attometer
Hence, the correct option is A.
Note: Alternatively, we could reason as follows, if
\[{10^{ - 18}}\] am is 1 m, then \[{10^{ - 9}}\] m would be equal to
\[\dfrac{{{{10}^{ - 9}}}}{{{{10}^{ - 18}}}}\] am, and this is equal to \[{10^9}\]am.
Now, but \[{10^{ - 9}}\] m is 1 nm. Then \[{10^9}\] am is actually equal to 1 nm.
Then 1 am is equal \[\dfrac{1}{{{{10}^9}}}\]am. And this is equal to \[{10^{ - 9}}\]nm.
Then 1 attometre is, indeed, equal to \[{10^{ - 9}}\]nm, which is identical to as calculated in step by step solution.
Complete Step-by-Step solution:
By the phrasal of the question, we are to find the equivalent of 1 attometre (a unit of length) in nanometre. To do this, we can use the knowledge of their conversion to metres. What is meant by this is to use the knowledge of the equivalent of attometre to metre, and the equivalent of 1 nanometre to metres.
1 attometre is equal to \[1 \times {10^{ - 18}}\] metres i.e. \[1am = {10^{ - 18}}m\] and this also implies that \[{10^{18}}\] attometre makes 1 metre that is \[{10^{18}}am = 1m\]. This can be written as \[{10^{18}}\dfrac{{am}}{m}\]
1 nanometre is equal to \[1 \times {10^{ - 9}}\] metres i.e. \[1nm = {10^{ - 9}}m\] and this can be written as \[{10^{ - 9}}\dfrac{m}{{nm}}\]
Hence to find the equivalent of attometre in nanometre, we shall do as follows
\[{10^{ - 9}}\dfrac{m}{{nm}} \times {10^{18}}\dfrac{{am}}{m}\]
Hence, by computation and cancellation of \[m\], we have
\[{10^9}\dfrac{{am}}{{nm}}\]
Then this means that \[{10^9}\] is equal to 1 nm.
Thus, by inverting \[{10^9}\dfrac{{am}}{{nm}}\], we have
\[\dfrac{1}{{{{10}^9}}}\dfrac{{nm}}{{am}}\] which is equivalent to \[{10^{ - 9}}\dfrac{{am}}{{nm}}\]. This implies that the \[{10^{ - 9}}\] nanometre makes 1 attometer
Hence, the correct option is A.
Note: Alternatively, we could reason as follows, if
\[{10^{ - 18}}\] am is 1 m, then \[{10^{ - 9}}\] m would be equal to
\[\dfrac{{{{10}^{ - 9}}}}{{{{10}^{ - 18}}}}\] am, and this is equal to \[{10^9}\]am.
Now, but \[{10^{ - 9}}\] m is 1 nm. Then \[{10^9}\] am is actually equal to 1 nm.
Then 1 am is equal \[\dfrac{1}{{{{10}^9}}}\]am. And this is equal to \[{10^{ - 9}}\]nm.
Then 1 attometre is, indeed, equal to \[{10^{ - 9}}\]nm, which is identical to as calculated in step by step solution.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

How to Convert a Galvanometer into an Ammeter or Voltmeter

