
1 attometer is ………. Nanometre
(A) \[{10^{ - 9}}\]
(B) \[{10^{ - 8}}\]
(C) \[{10^{ - 7}}\]
(D) \[{10^9}\]
Answer
178.8k+ views
Hint: 1 attometre is equal to \[1 \times {10^{ - 18}}\] metres. 1 nanometer is equal to \[1 \times {10^{ - 9}}\] meters. Using the two relations, we can multiply or divide them using the unit as a guide.
Complete Step-by-Step solution:
By the phrasal of the question, we are to find the equivalent of 1 attometre (a unit of length) in nanometre. To do this, we can use the knowledge of their conversion to metres. What is meant by this is to use the knowledge of the equivalent of attometre to metre, and the equivalent of 1 nanometre to metres.
1 attometre is equal to \[1 \times {10^{ - 18}}\] metres i.e. \[1am = {10^{ - 18}}m\] and this also implies that \[{10^{18}}\] attometre makes 1 metre that is \[{10^{18}}am = 1m\]. This can be written as \[{10^{18}}\dfrac{{am}}{m}\]
1 nanometre is equal to \[1 \times {10^{ - 9}}\] metres i.e. \[1nm = {10^{ - 9}}m\] and this can be written as \[{10^{ - 9}}\dfrac{m}{{nm}}\]
Hence to find the equivalent of attometre in nanometre, we shall do as follows
\[{10^{ - 9}}\dfrac{m}{{nm}} \times {10^{18}}\dfrac{{am}}{m}\]
Hence, by computation and cancellation of \[m\], we have
\[{10^9}\dfrac{{am}}{{nm}}\]
Then this means that \[{10^9}\] is equal to 1 nm.
Thus, by inverting \[{10^9}\dfrac{{am}}{{nm}}\], we have
\[\dfrac{1}{{{{10}^9}}}\dfrac{{nm}}{{am}}\] which is equivalent to \[{10^{ - 9}}\dfrac{{am}}{{nm}}\]. This implies that the \[{10^{ - 9}}\] nanometre makes 1 attometer
Hence, the correct option is A.
Note: Alternatively, we could reason as follows, if
\[{10^{ - 18}}\] am is 1 m, then \[{10^{ - 9}}\] m would be equal to
\[\dfrac{{{{10}^{ - 9}}}}{{{{10}^{ - 18}}}}\] am, and this is equal to \[{10^9}\]am.
Now, but \[{10^{ - 9}}\] m is 1 nm. Then \[{10^9}\] am is actually equal to 1 nm.
Then 1 am is equal \[\dfrac{1}{{{{10}^9}}}\]am. And this is equal to \[{10^{ - 9}}\]nm.
Then 1 attometre is, indeed, equal to \[{10^{ - 9}}\]nm, which is identical to as calculated in step by step solution.
Complete Step-by-Step solution:
By the phrasal of the question, we are to find the equivalent of 1 attometre (a unit of length) in nanometre. To do this, we can use the knowledge of their conversion to metres. What is meant by this is to use the knowledge of the equivalent of attometre to metre, and the equivalent of 1 nanometre to metres.
1 attometre is equal to \[1 \times {10^{ - 18}}\] metres i.e. \[1am = {10^{ - 18}}m\] and this also implies that \[{10^{18}}\] attometre makes 1 metre that is \[{10^{18}}am = 1m\]. This can be written as \[{10^{18}}\dfrac{{am}}{m}\]
1 nanometre is equal to \[1 \times {10^{ - 9}}\] metres i.e. \[1nm = {10^{ - 9}}m\] and this can be written as \[{10^{ - 9}}\dfrac{m}{{nm}}\]
Hence to find the equivalent of attometre in nanometre, we shall do as follows
\[{10^{ - 9}}\dfrac{m}{{nm}} \times {10^{18}}\dfrac{{am}}{m}\]
Hence, by computation and cancellation of \[m\], we have
\[{10^9}\dfrac{{am}}{{nm}}\]
Then this means that \[{10^9}\] is equal to 1 nm.
Thus, by inverting \[{10^9}\dfrac{{am}}{{nm}}\], we have
\[\dfrac{1}{{{{10}^9}}}\dfrac{{nm}}{{am}}\] which is equivalent to \[{10^{ - 9}}\dfrac{{am}}{{nm}}\]. This implies that the \[{10^{ - 9}}\] nanometre makes 1 attometer
Hence, the correct option is A.
Note: Alternatively, we could reason as follows, if
\[{10^{ - 18}}\] am is 1 m, then \[{10^{ - 9}}\] m would be equal to
\[\dfrac{{{{10}^{ - 9}}}}{{{{10}^{ - 18}}}}\] am, and this is equal to \[{10^9}\]am.
Now, but \[{10^{ - 9}}\] m is 1 nm. Then \[{10^9}\] am is actually equal to 1 nm.
Then 1 am is equal \[\dfrac{1}{{{{10}^9}}}\]am. And this is equal to \[{10^{ - 9}}\]nm.
Then 1 attometre is, indeed, equal to \[{10^{ - 9}}\]nm, which is identical to as calculated in step by step solution.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26
