
What is the value of the integral \[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} \], for any integer \[n\]?
A. \[ - 1\]
B. 0
C. 1
D. \[\pi \]
Answer
164.4k+ views
Hint: Here, a definite integral is given. First, consider the term present in the given integral as \[f\left( x \right) = {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]. Then calculate the value of \[f\left( {\pi - x} \right)\] by using the trigonometric properties. After that, substitute the values in the integration rule \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \] and solve it to get the required answer.
Formula Used: \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
Integration Rule: \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} \].
Let consider,
\[f\left( x \right) = {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
Now let’s calculate the value of \[f\left( {\pi - x} \right)\].
\[f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left( {2n + 1} \right)\left( {\pi - x} \right)\]
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left[ {\left( {2n + 1} \right)\pi - \left( {2n + 1} \right)x} \right]\]
Apply the trigonometric properties \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \] and \[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}x}}\left[ { - {{\cos }^3}\left( {2n + 1} \right)x} \right]\]
\[ \Rightarrow f\left( {\pi - x} \right) = - {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
\[ \Rightarrow f\left( {\pi - x} \right) = - f\left( x \right)\]
Now apply the rule of the definite integral \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
We get,
\[\int\limits_0^\pi {f\left( x \right)dx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\pi - x} \right)dx} \]
Substitute the values in the above integral equation.
\[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} { - f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} - \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = 0\]
Option ‘B’ is correct
Note: Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check the behaviour of the trigonometric functions for the different exponents and intervals.
Formula Used: \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
Integration Rule: \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} \].
Let consider,
\[f\left( x \right) = {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
Now let’s calculate the value of \[f\left( {\pi - x} \right)\].
\[f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left( {2n + 1} \right)\left( {\pi - x} \right)\]
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left[ {\left( {2n + 1} \right)\pi - \left( {2n + 1} \right)x} \right]\]
Apply the trigonometric properties \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \] and \[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}x}}\left[ { - {{\cos }^3}\left( {2n + 1} \right)x} \right]\]
\[ \Rightarrow f\left( {\pi - x} \right) = - {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
\[ \Rightarrow f\left( {\pi - x} \right) = - f\left( x \right)\]
Now apply the rule of the definite integral \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
We get,
\[\int\limits_0^\pi {f\left( x \right)dx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\pi - x} \right)dx} \]
Substitute the values in the above integral equation.
\[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} { - f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} - \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = 0\]
Option ‘B’ is correct
Note: Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check the behaviour of the trigonometric functions for the different exponents and intervals.
Recently Updated Pages
Difference Between AC and DC Generator

Difference Between Starch and Cellulose - Introduction and Structural Difference

Know About Difference Between Zener Breakdown and Avalanche Breakdown

Stefan Boltzmann Law - Definition and Equation

Thermodynamics: Introduction, Laws, Systems, Notes PDF & Thermal Equilibrium

Thermodynamics and Thermochemistry- Definition, Equation, Laws, Difference, and Facts

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
