
What is the value of the integral \[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} \], for any integer \[n\]?
A. \[ - 1\]
B. 0
C. 1
D. \[\pi \]
Answer
224.1k+ views
Hint: Here, a definite integral is given. First, consider the term present in the given integral as \[f\left( x \right) = {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]. Then calculate the value of \[f\left( {\pi - x} \right)\] by using the trigonometric properties. After that, substitute the values in the integration rule \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \] and solve it to get the required answer.
Formula Used: \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
Integration Rule: \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} \].
Let consider,
\[f\left( x \right) = {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
Now let’s calculate the value of \[f\left( {\pi - x} \right)\].
\[f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left( {2n + 1} \right)\left( {\pi - x} \right)\]
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left[ {\left( {2n + 1} \right)\pi - \left( {2n + 1} \right)x} \right]\]
Apply the trigonometric properties \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \] and \[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}x}}\left[ { - {{\cos }^3}\left( {2n + 1} \right)x} \right]\]
\[ \Rightarrow f\left( {\pi - x} \right) = - {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
\[ \Rightarrow f\left( {\pi - x} \right) = - f\left( x \right)\]
Now apply the rule of the definite integral \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
We get,
\[\int\limits_0^\pi {f\left( x \right)dx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\pi - x} \right)dx} \]
Substitute the values in the above integral equation.
\[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} { - f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} - \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = 0\]
Option ‘B’ is correct
Note: Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check the behaviour of the trigonometric functions for the different exponents and intervals.
Formula Used: \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \]
\[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
Integration Rule: \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
Complete step by step solution: The given definite integral is \[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} \].
Let consider,
\[f\left( x \right) = {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
Now let’s calculate the value of \[f\left( {\pi - x} \right)\].
\[f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left( {2n + 1} \right)\left( {\pi - x} \right)\]
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}\left( {\pi - x} \right)}}{\cos ^3}\left[ {\left( {2n + 1} \right)\pi - \left( {2n + 1} \right)x} \right]\]
Apply the trigonometric properties \[{\sin ^n}\left( {\pi - \theta } \right) = \sin \theta \] and \[{\cos ^n}\left( {\pi - \theta } \right) = - {\cos ^n}\theta \], if \[n\] is odd number.
\[ \Rightarrow f\left( {\pi - x} \right) = {e^{{{\sin }^2}x}}\left[ { - {{\cos }^3}\left( {2n + 1} \right)x} \right]\]
\[ \Rightarrow f\left( {\pi - x} \right) = - {e^{{{\sin }^2}x}}{\cos ^3}\left( {2n + 1} \right)x\]
\[ \Rightarrow f\left( {\pi - x} \right) = - f\left( x \right)\]
Now apply the rule of the definite integral \[\int\limits_0^{2a} {f\left( x \right) dx} = \int\limits_0^a {f\left( x \right) dx} + \int\limits_0^a {f\left( {2a - x} \right) dx} \]
We get,
\[\int\limits_0^\pi {f\left( x \right)dx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} {f\left( {\pi - x} \right)dx} \]
Substitute the values in the above integral equation.
\[\int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} + \int\limits_0^{\dfrac{\pi }{2}} { - f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} - \int\limits_0^{\dfrac{\pi }{2}} {f\left( x \right)dx} \]
\[ \Rightarrow \int\limits_0^\pi {{e^{{{\sin }^2}x}}{{\cos }^3}\left( {2n + 1} \right)xdx} = 0\]
Option ‘B’ is correct
Note: Sometimes students get confused and try to solve the integral by using the trigonometric identities. We can solve this integral by using the methods of indefinite integral. But the answer will be wrong.
So, to calculate the correct answer in the definite integral, first check the behaviour of the trigonometric functions for the different exponents and intervals.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2026 Electrochemistry Notes - Free PDF Download

JEE Advanced 2026 Revision Notes for Electricity and Magnetism - Free PDF Download

JEE Advanced 2026 Revision Notes for Differential Calculus - Free PDF Download

JEE Advanced Course 2026 - Subject List, Syllabus, Course, Details

JEE Advanced Chemistry Revision Notes

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

IIT Fees Structure 2025

Other Pages
JEE Main 2026: City Intimation Slip Releasing Today, Application Form Closed, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Hybridisation in Chemistry – Concept, Types & Applications

