
The value of $\mathop {\lim }\limits_{n \to \infty } \dfrac{{[r] + [2r] + [3r] + ... + [nr]}}{{{n^2}}}$ where $r$ is a non-zero real number and $[r]$ denotes the greatest integer less than or equal to $r$ , is equal to
A. $0$
B. $r$
C. $\dfrac{r}{2}$
D. $2r$
Answer
216.6k+ views
Hint: The greatest integer less than or equal to the number is returned by the greatest integer function. The biggest integer less than or equal to $x$ is denoted by the letter $[x]$. The specified number will be rounded to the nearest integer that is less than or equal to the number. We will use this information to express the greatest integer function of $r$ in terms of the squeeze theorem and thus find the given limit.
Formula used: The squeeze theorem is a theorem in calculus about the limit of a function squeezed between two other functions. According to squeeze (or sandwich) theorem, if $\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } h(x)$
then $\mathop {\lim }\limits_{x \to \infty } g(x) = l$
Complete step by step solution:
It is given that $[r]$ is the greatest integer function, so –
$
r - 1 < [r] \leqslant r \\
2r - 1 < [2r] \leqslant 2r \\
3r - 1 < [3r] \leqslant 3r \\
. \\
. \\
. \\
nr - 1 < [nr] \leqslant nr \\
$
Adding all the above equations, we get –
$
r - 1 + 2r - 1 + 3r - 1...nr - 1 < [r] + [2r] + [3r] + ... + [nr] \leqslant r + 2r + 3r + ... + nr \\
r(1 + 2 + 3 + ... + n) - n < [r] + [2r] + [3r] + ... + [nr] \leqslant r(1 + 2 + 3 + ... + n) \\
$
Dividing all the sides by ${n^2}$ and putting $1 + 2 + 3 + .... + n = \dfrac{{n(n + 1)}}{2}$ , we get –
$
\dfrac{{rn(n + 1)}}{{2{n^2}}} - \dfrac{n}{{{n^2}}} < \dfrac{{[r] + [2r] + [3r] + ... + [nr]}}{{{n^2}}} \leqslant \dfrac{{rn(n + 1)}}{{2{n^2}}} \\
\dfrac{r}{2}(1 + \dfrac{1}{n}) - \dfrac{1}{n} < \dfrac{{[r] + [2r] + [3r] + ... + [nr]}}{{{n^2}}} \leqslant \dfrac{r}{2}(1 + \dfrac{1}{n}) \\
$
Now, $\mathop {\lim }\limits_{n \to \infty } \dfrac{r}{2}(1 + \dfrac{1}{n}) = \dfrac{r}{2}$
And $\mathop {\lim }\limits_{n \to \infty } \dfrac{r}{2}(1 + \dfrac{1}{n}) - \dfrac{1}{n} = \dfrac{r}{2}$
Now, according to sandwich theorem, if $\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } h(x)$
Then $\mathop {\lim }\limits_{x \to \infty } g(x) = l$
The squeeze theorem also works if $f(x) < g(x) \leqslant h(x)$
So, we get $\mathop {\lim }\limits_{n \to \infty } \dfrac{{[r] + [2r] + [3r] + .... + [nr]}}{{{n^2}}} = \dfrac{r}{2}$
Thus, the correct option is C.
Note: To understand greatest integer function more clearly, look at this example of a greatest integer function - $[1.9] = 1$ , so we see that $0.9 < [1.9] \leqslant 1.9$ , that’s why we use the relation $r - 1 < [r] \leqslant r$ in the above solution. To find the limit of a given function when the variable tends to infinity, we express the function such that the variable is present only in the denominator of a constant like in this we expressed the function as $\dfrac{1}{n}$.
Formula used: The squeeze theorem is a theorem in calculus about the limit of a function squeezed between two other functions. According to squeeze (or sandwich) theorem, if $\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } h(x)$
then $\mathop {\lim }\limits_{x \to \infty } g(x) = l$
Complete step by step solution:
It is given that $[r]$ is the greatest integer function, so –
$
r - 1 < [r] \leqslant r \\
2r - 1 < [2r] \leqslant 2r \\
3r - 1 < [3r] \leqslant 3r \\
. \\
. \\
. \\
nr - 1 < [nr] \leqslant nr \\
$
Adding all the above equations, we get –
$
r - 1 + 2r - 1 + 3r - 1...nr - 1 < [r] + [2r] + [3r] + ... + [nr] \leqslant r + 2r + 3r + ... + nr \\
r(1 + 2 + 3 + ... + n) - n < [r] + [2r] + [3r] + ... + [nr] \leqslant r(1 + 2 + 3 + ... + n) \\
$
Dividing all the sides by ${n^2}$ and putting $1 + 2 + 3 + .... + n = \dfrac{{n(n + 1)}}{2}$ , we get –
$
\dfrac{{rn(n + 1)}}{{2{n^2}}} - \dfrac{n}{{{n^2}}} < \dfrac{{[r] + [2r] + [3r] + ... + [nr]}}{{{n^2}}} \leqslant \dfrac{{rn(n + 1)}}{{2{n^2}}} \\
\dfrac{r}{2}(1 + \dfrac{1}{n}) - \dfrac{1}{n} < \dfrac{{[r] + [2r] + [3r] + ... + [nr]}}{{{n^2}}} \leqslant \dfrac{r}{2}(1 + \dfrac{1}{n}) \\
$
Now, $\mathop {\lim }\limits_{n \to \infty } \dfrac{r}{2}(1 + \dfrac{1}{n}) = \dfrac{r}{2}$
And $\mathop {\lim }\limits_{n \to \infty } \dfrac{r}{2}(1 + \dfrac{1}{n}) - \dfrac{1}{n} = \dfrac{r}{2}$
Now, according to sandwich theorem, if $\mathop {\lim }\limits_{x \to \infty } f(x) = \mathop {\lim }\limits_{x \to \infty } h(x)$
Then $\mathop {\lim }\limits_{x \to \infty } g(x) = l$
The squeeze theorem also works if $f(x) < g(x) \leqslant h(x)$
So, we get $\mathop {\lim }\limits_{n \to \infty } \dfrac{{[r] + [2r] + [3r] + .... + [nr]}}{{{n^2}}} = \dfrac{r}{2}$
Thus, the correct option is C.
Note: To understand greatest integer function more clearly, look at this example of a greatest integer function - $[1.9] = 1$ , so we see that $0.9 < [1.9] \leqslant 1.9$ , that’s why we use the relation $r - 1 < [r] \leqslant r$ in the above solution. To find the limit of a given function when the variable tends to infinity, we express the function such that the variable is present only in the denominator of a constant like in this we expressed the function as $\dfrac{1}{n}$.
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

