
The students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ are to be divided into 3 groups A, B, and C such that each group has at least one student and the group C has at most 3 students. Then the total number of possibilities for forming such groups is
Answer
125.1k+ views
Hint: Here the given question is based on concept of combination. To form a 3 groups A, B and C we have to solve it by 3 cases on ways of choosing 1 student to at most 3 students in a group by the concept of combination then summing over all three cases to get a required number of possibilities of forming a group
Formula Used: The formula used to calculate the combination is: $$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$$----(1)
Complete step by step Solution: Given, the 10 students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ i.e., $$n = 10$$
To form a 3 groups A, B and C group has at least one student and the group C has at most 3 students. Whenever,
Case 1: If group C has one student
Number of ways of selecting one student who will be in group C is $${}^{10}{C_1}$$ and the remaining students will be distributed into 2 groups is $$\left( {{2^9} - 2} \right)$$
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right)$$
Case 2: Similarly, if group C has two students
$$ \Rightarrow \,{}^{10}{C_2}\left( {{2^8} - 2} \right)$$
Case 3: Similarly, if group C has three students.
$$ \Rightarrow \,{}^{10}{C_3}\left( {{2^7} - 2} \right)$$
Now, Total number of ways is
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right) + {}^{10}{C_2}\left( {{2^8} - 2} \right) + {}^{10}{C_3}\left( {{2^7} - 2} \right)$$
By the formula of combination
$$ \Rightarrow \,\dfrac{{10!}}{{\left( {10 - 1} \right)!1!}}\left( {512 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 2} \right)!2!}}\left( {256 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 3} \right)!3!}}\left( {128 - 2} \right)$$
$$ \Rightarrow \,\dfrac{{10!}}{{9! \cdot 1!}}\left( {510} \right) + \dfrac{{10!}}{{8! \cdot 2!}}\left( {254} \right) + \dfrac{{10!}}{{7! \cdot 3!}}\left( {126} \right)$$
$$ \Rightarrow \,\dfrac{{10 \times 9!}}{{9!\, \times 1!}}\left( {510} \right) + \dfrac{{10 \times 9 \times 8!}}{{8!\, \times 2!}}\left( {254} \right) + \dfrac{{10 \times 9 \times 8 \times 7!}}{{7!\, \times 3 \times 2!}}\left( {126} \right)$$
$$ \Rightarrow \,10\left( {510} \right) + 45\left( {254} \right) + 120\left( {126} \right)$$
$$ \Rightarrow \,5100 + 11430 + 15120$$
$$ \Rightarrow \,31650$$
Hence, $$31650$$ ways of possibilities of forming such groups are there
Note: Remember, factorial is the continued product of first n natural numbers is called the “n factorial” and it represented by $n! = \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right).....3 \cdot 2 \cdot 1$.
the student has to know the difference between at least and at most. The word “at least” means it will be the minimum value and then it can be exceeded to the maximum. The word “at most” means it is the maximum value and it can’t exceed further, we have to consider the minimum value also.
Formula Used: The formula used to calculate the combination is: $$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$$----(1)
Complete step by step Solution: Given, the 10 students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ i.e., $$n = 10$$
To form a 3 groups A, B and C group has at least one student and the group C has at most 3 students. Whenever,
Case 1: If group C has one student
Number of ways of selecting one student who will be in group C is $${}^{10}{C_1}$$ and the remaining students will be distributed into 2 groups is $$\left( {{2^9} - 2} \right)$$
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right)$$
Case 2: Similarly, if group C has two students
$$ \Rightarrow \,{}^{10}{C_2}\left( {{2^8} - 2} \right)$$
Case 3: Similarly, if group C has three students.
$$ \Rightarrow \,{}^{10}{C_3}\left( {{2^7} - 2} \right)$$
Now, Total number of ways is
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right) + {}^{10}{C_2}\left( {{2^8} - 2} \right) + {}^{10}{C_3}\left( {{2^7} - 2} \right)$$
By the formula of combination
$$ \Rightarrow \,\dfrac{{10!}}{{\left( {10 - 1} \right)!1!}}\left( {512 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 2} \right)!2!}}\left( {256 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 3} \right)!3!}}\left( {128 - 2} \right)$$
$$ \Rightarrow \,\dfrac{{10!}}{{9! \cdot 1!}}\left( {510} \right) + \dfrac{{10!}}{{8! \cdot 2!}}\left( {254} \right) + \dfrac{{10!}}{{7! \cdot 3!}}\left( {126} \right)$$
$$ \Rightarrow \,\dfrac{{10 \times 9!}}{{9!\, \times 1!}}\left( {510} \right) + \dfrac{{10 \times 9 \times 8!}}{{8!\, \times 2!}}\left( {254} \right) + \dfrac{{10 \times 9 \times 8 \times 7!}}{{7!\, \times 3 \times 2!}}\left( {126} \right)$$
$$ \Rightarrow \,10\left( {510} \right) + 45\left( {254} \right) + 120\left( {126} \right)$$
$$ \Rightarrow \,5100 + 11430 + 15120$$
$$ \Rightarrow \,31650$$
Hence, $$31650$$ ways of possibilities of forming such groups are there
Note: Remember, factorial is the continued product of first n natural numbers is called the “n factorial” and it represented by $n! = \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right).....3 \cdot 2 \cdot 1$.
the student has to know the difference between at least and at most. The word “at least” means it will be the minimum value and then it can be exceeded to the maximum. The word “at most” means it is the maximum value and it can’t exceed further, we have to consider the minimum value also.
Recently Updated Pages
JEE Advanced 2025 - Exam Dates, Eligibility and Registration

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

JEE Advanced 2022 Paper 1 with Solutions

JEE Advanced 2025 Revision Notes for Chemical Equilibrium - Free PDF Download

JEE Advanced 2025 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2025 Revision Notes for Algebra - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2024 Syllabus Weightage

Top IIT Colleges in India 2025

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

IIT Fees Structure 2025

B.Tech IIT CSE Cutoff in 2025 JoSAA Counselling

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
