
The students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ are to be divided into 3 groups A, B, and C such that each group has at least one student and the group C has at most 3 students. Then the total number of possibilities for forming such groups is
Answer
226.8k+ views
Hint: Here the given question is based on concept of combination. To form a 3 groups A, B and C we have to solve it by 3 cases on ways of choosing 1 student to at most 3 students in a group by the concept of combination then summing over all three cases to get a required number of possibilities of forming a group
Formula Used: The formula used to calculate the combination is: $$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$$----(1)
Complete step by step Solution: Given, the 10 students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ i.e., $$n = 10$$
To form a 3 groups A, B and C group has at least one student and the group C has at most 3 students. Whenever,
Case 1: If group C has one student
Number of ways of selecting one student who will be in group C is $${}^{10}{C_1}$$ and the remaining students will be distributed into 2 groups is $$\left( {{2^9} - 2} \right)$$
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right)$$
Case 2: Similarly, if group C has two students
$$ \Rightarrow \,{}^{10}{C_2}\left( {{2^8} - 2} \right)$$
Case 3: Similarly, if group C has three students.
$$ \Rightarrow \,{}^{10}{C_3}\left( {{2^7} - 2} \right)$$
Now, Total number of ways is
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right) + {}^{10}{C_2}\left( {{2^8} - 2} \right) + {}^{10}{C_3}\left( {{2^7} - 2} \right)$$
By the formula of combination
$$ \Rightarrow \,\dfrac{{10!}}{{\left( {10 - 1} \right)!1!}}\left( {512 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 2} \right)!2!}}\left( {256 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 3} \right)!3!}}\left( {128 - 2} \right)$$
$$ \Rightarrow \,\dfrac{{10!}}{{9! \cdot 1!}}\left( {510} \right) + \dfrac{{10!}}{{8! \cdot 2!}}\left( {254} \right) + \dfrac{{10!}}{{7! \cdot 3!}}\left( {126} \right)$$
$$ \Rightarrow \,\dfrac{{10 \times 9!}}{{9!\, \times 1!}}\left( {510} \right) + \dfrac{{10 \times 9 \times 8!}}{{8!\, \times 2!}}\left( {254} \right) + \dfrac{{10 \times 9 \times 8 \times 7!}}{{7!\, \times 3 \times 2!}}\left( {126} \right)$$
$$ \Rightarrow \,10\left( {510} \right) + 45\left( {254} \right) + 120\left( {126} \right)$$
$$ \Rightarrow \,5100 + 11430 + 15120$$
$$ \Rightarrow \,31650$$
Hence, $$31650$$ ways of possibilities of forming such groups are there
Note: Remember, factorial is the continued product of first n natural numbers is called the “n factorial” and it represented by $n! = \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right).....3 \cdot 2 \cdot 1$.
the student has to know the difference between at least and at most. The word “at least” means it will be the minimum value and then it can be exceeded to the maximum. The word “at most” means it is the maximum value and it can’t exceed further, we have to consider the minimum value also.
Formula Used: The formula used to calculate the combination is: $$^n{C_r} = \dfrac{{n!}}{{\left( {n - r} \right)!r!}}$$----(1)
Complete step by step Solution: Given, the 10 students $${S_1},{\text{ }}{S_2},...{\text{ }}{S_{10}}\;$$ i.e., $$n = 10$$
To form a 3 groups A, B and C group has at least one student and the group C has at most 3 students. Whenever,
Case 1: If group C has one student
Number of ways of selecting one student who will be in group C is $${}^{10}{C_1}$$ and the remaining students will be distributed into 2 groups is $$\left( {{2^9} - 2} \right)$$
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right)$$
Case 2: Similarly, if group C has two students
$$ \Rightarrow \,{}^{10}{C_2}\left( {{2^8} - 2} \right)$$
Case 3: Similarly, if group C has three students.
$$ \Rightarrow \,{}^{10}{C_3}\left( {{2^7} - 2} \right)$$
Now, Total number of ways is
$$ \Rightarrow \,{}^{10}{C_1}\left( {{2^9} - 2} \right) + {}^{10}{C_2}\left( {{2^8} - 2} \right) + {}^{10}{C_3}\left( {{2^7} - 2} \right)$$
By the formula of combination
$$ \Rightarrow \,\dfrac{{10!}}{{\left( {10 - 1} \right)!1!}}\left( {512 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 2} \right)!2!}}\left( {256 - 2} \right) + \dfrac{{10!}}{{\left( {10 - 3} \right)!3!}}\left( {128 - 2} \right)$$
$$ \Rightarrow \,\dfrac{{10!}}{{9! \cdot 1!}}\left( {510} \right) + \dfrac{{10!}}{{8! \cdot 2!}}\left( {254} \right) + \dfrac{{10!}}{{7! \cdot 3!}}\left( {126} \right)$$
$$ \Rightarrow \,\dfrac{{10 \times 9!}}{{9!\, \times 1!}}\left( {510} \right) + \dfrac{{10 \times 9 \times 8!}}{{8!\, \times 2!}}\left( {254} \right) + \dfrac{{10 \times 9 \times 8 \times 7!}}{{7!\, \times 3 \times 2!}}\left( {126} \right)$$
$$ \Rightarrow \,10\left( {510} \right) + 45\left( {254} \right) + 120\left( {126} \right)$$
$$ \Rightarrow \,5100 + 11430 + 15120$$
$$ \Rightarrow \,31650$$
Hence, $$31650$$ ways of possibilities of forming such groups are there
Note: Remember, factorial is the continued product of first n natural numbers is called the “n factorial” and it represented by $n! = \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right).....3 \cdot 2 \cdot 1$.
the student has to know the difference between at least and at most. The word “at least” means it will be the minimum value and then it can be exceeded to the maximum. The word “at most” means it is the maximum value and it can’t exceed further, we have to consider the minimum value also.
Recently Updated Pages
There are 10 points in the plane no three are collinear class 11 maths JEE_Advanced

A boat is to be manned by eight men of whom 2 can only class 11 maths JEE_Advanced

If centre of a regular hexagon is at origin and one class 11 maths JEE_Advanced

If 16 identical pencils are distributed among 4 children class 11 maths JEE_Advanced

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

If nCr 1 + n + 1Cr 1 + n + 2Cr 1 + + 2nCr 1 2n + 1Cr2 class 11 maths JEE_Advanced

Trending doubts
JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Lenz Law

MHT CET 2025: Exam Date PCM and PCB (OUT), Application Form (Open), Eligibility and Syllabus Updates

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
Understanding Average and RMS Value in Electrical Circuits

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Common Ion Effect: Concept, Applications, and Problem-Solving

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

NCERT Solutions For Class 11 Maths Chapter 8 Sequences and Series (2025-26)

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

