
The coefficient of \[{x^n}\] in the expansion of \[{e^{{e^x}}}\] is
A. \[{x^n}\dfrac{1}{{\left( {n + 1} \right)!}}\left( {\dfrac{{{1^n}}}{{1!}} + \dfrac{{{2^n}}}{{2!}} + \dfrac{{{3^n}}}{{3!}} + ...\infty } \right)\]
B. \[{x^n}\dfrac{1}{{n!}}\left( {\dfrac{{{1^n}}}{{1!}} + \dfrac{{{2^n}}}{{2!}} + \dfrac{{{3^n}}}{{3!}} + ...\infty } \right)\]
C. \[\dfrac{1}{{n!}}\left( {\dfrac{{{1^n}}}{{1!}} + \dfrac{{{2^n}}}{{2!}} + \dfrac{{{3^n}}}{{3!}} + ...\infty } \right)\]
D. \[\dfrac{1}{{n!}}\left( {\dfrac{{{1^n}}}{{1!}} + \dfrac{{{3^n}}}{{3!}} + \dfrac{{{5^n}}}{{5!}} + ...\infty } \right)\]
Answer
216k+ views
- Hint: The given function is an exponential function. So, write the series expansion for the exponential function \[{e^x}\]. Substitute the expansion of \[{e^x}\] in the given function \[{e^{{e^x}}}\]. The \[\left( {n + 1} \right)\]-th term of the series contains \[{x^n}\]. So, the coefficient of \[{x^n}\] will be found from the \[\left( {n + 1} \right)\]-th term.
Formula Used:
The series expansion for \[{e^x}\] is \[1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + .....\infty \]
Complete step-by-step answer:
The given function is an exponential function.
We know the series expansion for the exponential function \[{e^x}\], which is \[1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + .....\infty \]
So, \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^n}}}{{n!}} + .....\infty - - - - - \left( i \right)\]
But there is \[{e^x}\] at the place of \[x\] in the given function.
So, if we replace \[x\] by \[{e^x}\], we get
\[{e^{{e^x}}} = 1 + \dfrac{{{e^x}}}{{1!}} + \dfrac{{{{\left( {{e^x}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{e^x}} \right)}^3}}}{{3!}} + ..... + \dfrac{{{{\left( {{e^x}} \right)}^n}}}{{n!}} + .....\infty - - - - - \left( {ii} \right)\]
Using the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we can write \[{\left( {{e^x}} \right)^2} = {e^{2x}}\] and \[{\left( {{e^x}} \right)^3} = {e^{3x}}\]
From equation \[\left( {ii} \right)\], we get
\[{e^{{e^x}}} = 1 + \dfrac{{{e^x}}}{{1!}} + \dfrac{{{e^{2x}}}}{{2!}} + \dfrac{{{e^{3x}}}}{{3!}} + ..... + \dfrac{{{e^{nx}}}}{{n!}} + .....\infty - - - - - \left( {iii} \right)\]
Obtain the expansions of \[{e^{2x}}\] and \[{e^{3x}}\] using the expansion given by \[\left( i \right)\]
Replacing \[x\] by \[2x\] in \[\left( i \right)\], we get
\[{e^{2x}} = 1 + \dfrac{{\left( {2x} \right)}}{{1!}} + \dfrac{{{{\left( {2x} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {2x} \right)}^3}}}{{3!}} + ..... + \dfrac{{{{\left( {2x} \right)}^n}}}{{n!}} + .....\infty - - - - - \left( {iv} \right)\]
Replacing \[x\] by \[3x\] in \[\left( i \right)\], we get
\[{e^{3x}} = 1 + \dfrac{{\left( {3x} \right)}}{{1!}} + \dfrac{{{{\left( {3x} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {3x} \right)}^3}}}{{3!}} + ..... + \dfrac{{{{\left( {3x} \right)}^n}}}{{n!}} + .....\infty - - - - - \left( v \right)\]
Substituting the expansions of \[{e^x}\], \[{e^{2x}}\] and \[{e^{3x}}\] given by \[\left( i \right)\], \[\left( {iv} \right)\] and \[\left( v \right)\] in the expansion of \[{e^{{e^x}}}\] given by \[\left( {iii} \right)\], we get
\[{e^{{e^x}}} = 1 + \dfrac{1}{{1!}}\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^n}}}{{n!}} + .....\infty } \right) + \dfrac{1}{{2!}}\left( {1 + \dfrac{{\left( {2x} \right)}}{{1!}} + \dfrac{{{{\left( {2x} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {2x} \right)}^3}}}{{3!}} + ..... + \dfrac{{{{\left( {2x} \right)}^n}}}{{n!}} + .....\infty } \right) + \dfrac{1}{{3!}}\left( {1 + \dfrac{{\left( {3x} \right)}}{{1!}} + \dfrac{{{{\left( {3x} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {3x} \right)}^3}}}{{3!}} + ..... + \dfrac{{{{\left( {3x} \right)}^n}}}{{n!}} + .....\infty } \right) + .....\infty - - - - - \left( {vi} \right)\]
It is required to find out the coefficient of \[{x^n}\] in the expansion of the given function \[{e^{{e^x}}}\], which is given in \[\left( {vi} \right)\]
The term \[{x^n}\] is present in \[\left( {n + 1} \right)\]-th term of each bracket in the right-hand side of the expansion given by \[\left( {vi} \right)\]
If we arrange the terms having \[{x^n}\], we get the term \[\dfrac{1}{{n!}}\left( {\dfrac{{{1^n}}}{{1!}} + \dfrac{{{2^n}}}{{2!}} + \dfrac{{{3^n}}}{{3!}} + .....} \right){x^n}\]
So, the coefficient of \[{x^n}\] in the given series is \[\dfrac{1}{{n!}}\left( {\dfrac{{{1^n}}}{{1!}} + \dfrac{{{2^n}}}{{2!}} + \dfrac{{{3^n}}}{{3!}} + .....} \right)\]
Hence, option C is correct.
Note:- In the series expansion of \[{e^x}\], all the terms are positive for positive values of \[x\] but for the negative values of \[x\], the signs of the terms alter. The denominators consist of the factorial of the natural numbers.
Formula Used:
The series expansion for \[{e^x}\] is \[1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + .....\infty \]
Complete step-by-step answer:
The given function is an exponential function.
We know the series expansion for the exponential function \[{e^x}\], which is \[1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + .....\infty \]
So, \[{e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^n}}}{{n!}} + .....\infty - - - - - \left( i \right)\]
But there is \[{e^x}\] at the place of \[x\] in the given function.
So, if we replace \[x\] by \[{e^x}\], we get
\[{e^{{e^x}}} = 1 + \dfrac{{{e^x}}}{{1!}} + \dfrac{{{{\left( {{e^x}} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {{e^x}} \right)}^3}}}{{3!}} + ..... + \dfrac{{{{\left( {{e^x}} \right)}^n}}}{{n!}} + .....\infty - - - - - \left( {ii} \right)\]
Using the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we can write \[{\left( {{e^x}} \right)^2} = {e^{2x}}\] and \[{\left( {{e^x}} \right)^3} = {e^{3x}}\]
From equation \[\left( {ii} \right)\], we get
\[{e^{{e^x}}} = 1 + \dfrac{{{e^x}}}{{1!}} + \dfrac{{{e^{2x}}}}{{2!}} + \dfrac{{{e^{3x}}}}{{3!}} + ..... + \dfrac{{{e^{nx}}}}{{n!}} + .....\infty - - - - - \left( {iii} \right)\]
Obtain the expansions of \[{e^{2x}}\] and \[{e^{3x}}\] using the expansion given by \[\left( i \right)\]
Replacing \[x\] by \[2x\] in \[\left( i \right)\], we get
\[{e^{2x}} = 1 + \dfrac{{\left( {2x} \right)}}{{1!}} + \dfrac{{{{\left( {2x} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {2x} \right)}^3}}}{{3!}} + ..... + \dfrac{{{{\left( {2x} \right)}^n}}}{{n!}} + .....\infty - - - - - \left( {iv} \right)\]
Replacing \[x\] by \[3x\] in \[\left( i \right)\], we get
\[{e^{3x}} = 1 + \dfrac{{\left( {3x} \right)}}{{1!}} + \dfrac{{{{\left( {3x} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {3x} \right)}^3}}}{{3!}} + ..... + \dfrac{{{{\left( {3x} \right)}^n}}}{{n!}} + .....\infty - - - - - \left( v \right)\]
Substituting the expansions of \[{e^x}\], \[{e^{2x}}\] and \[{e^{3x}}\] given by \[\left( i \right)\], \[\left( {iv} \right)\] and \[\left( v \right)\] in the expansion of \[{e^{{e^x}}}\] given by \[\left( {iii} \right)\], we get
\[{e^{{e^x}}} = 1 + \dfrac{1}{{1!}}\left( {1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ..... + \dfrac{{{x^n}}}{{n!}} + .....\infty } \right) + \dfrac{1}{{2!}}\left( {1 + \dfrac{{\left( {2x} \right)}}{{1!}} + \dfrac{{{{\left( {2x} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {2x} \right)}^3}}}{{3!}} + ..... + \dfrac{{{{\left( {2x} \right)}^n}}}{{n!}} + .....\infty } \right) + \dfrac{1}{{3!}}\left( {1 + \dfrac{{\left( {3x} \right)}}{{1!}} + \dfrac{{{{\left( {3x} \right)}^2}}}{{2!}} + \dfrac{{{{\left( {3x} \right)}^3}}}{{3!}} + ..... + \dfrac{{{{\left( {3x} \right)}^n}}}{{n!}} + .....\infty } \right) + .....\infty - - - - - \left( {vi} \right)\]
It is required to find out the coefficient of \[{x^n}\] in the expansion of the given function \[{e^{{e^x}}}\], which is given in \[\left( {vi} \right)\]
The term \[{x^n}\] is present in \[\left( {n + 1} \right)\]-th term of each bracket in the right-hand side of the expansion given by \[\left( {vi} \right)\]
If we arrange the terms having \[{x^n}\], we get the term \[\dfrac{1}{{n!}}\left( {\dfrac{{{1^n}}}{{1!}} + \dfrac{{{2^n}}}{{2!}} + \dfrac{{{3^n}}}{{3!}} + .....} \right){x^n}\]
So, the coefficient of \[{x^n}\] in the given series is \[\dfrac{1}{{n!}}\left( {\dfrac{{{1^n}}}{{1!}} + \dfrac{{{2^n}}}{{2!}} + \dfrac{{{3^n}}}{{3!}} + .....} \right)\]
Hence, option C is correct.
Note:- In the series expansion of \[{e^x}\], all the terms are positive for positive values of \[x\] but for the negative values of \[x\], the signs of the terms alter. The denominators consist of the factorial of the natural numbers.
Recently Updated Pages
JEE Advanced 2025 Sample Paper with Solutions – FREE PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Analytical Geometry - Free PDF Download

JEE Advanced 2022 Question Paper with Solutions PDF free Download

JEE Advanced 2026 Revision Notes for Differential Calculus - Free PDF Download

JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

