
What is the solution of the differential equation \[y - x\dfrac{{dy}}{{dx}} = a\left( {{y^2} + \dfrac{{dy}}{{dx}}} \right)\]?
A. \[\left( {x + a} \right)\left( {x + ay} \right) = cy\]
B. \[\left( {x + a} \right)\left( {1 - ay} \right) = cy\]
C. \[\left( {x + a} \right)\left( {1 - ay} \right) = c\]
D. None of these
Answer
216k+ views
Hint: First we will find \[\dfrac{{dy}}{{dx}}\] in terms of x, y, a. Then separate all variables and take integration on both sides of the differential equation. Then integrating both sides of the differential equation and apply the logarithm formula to simplify the solution.
Formula Used: \[\int {\dfrac{1}{x}dx} = \log x + c\]
Product formula of logarithm:
\[\log ab = \log a + \log b\]
Quotient formula of logarithm:
\[\log \dfrac{a}{b} = \log a - \log b\]
Complete step by step solution: Given differential equation is:
\[y - x\dfrac{{dy}}{{dx}} = a\left( {{y^2} + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}}\]
Add both sides by \[x\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}}\]
Calculating the value of \[\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y = a{y^2} + \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - a{y^2} = \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
Now we will separate the variables of the differential equation:
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y - a{y^2}}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
We can rewrite \[\dfrac{1}{{y\left( {1 - ay} \right)}}\] as sum of two terms.
\[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\]
Substitute \[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\] in \[\dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \left( {\dfrac{1}{y} + \dfrac{a}{{1 - ay}}} \right)dy\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{1}{y}dy + \dfrac{a}{{1 - ay}}dy\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \int {\dfrac{1}{y}dy} + \int {\dfrac{a}{{1 - ay}}dy} \]
Assume that \[{I_1} = \int {\dfrac{a}{{1 - ay}}dy} \]
Let \[1 - ay = z\]
Differentiate both sides:
\[ - ady = dz\]
Substitute \[ - ady = dz\] and \[1 - ay = z\] in \[{I_1}\]
\[{I_1} = - \int {\dfrac{1}{z}dz} \]
Applying the formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[{I_1} = - \log z + {c_1}\]
Substitute the value of z:
\[{I_1} = - \log \left( {1 - ay} \right) + {c_1}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \log x + {c_2}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dy}}{y}} = \log y + {c_3}\]
Substitute the values of \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} ,\,\int {\dfrac{1}{y}dy} ,\,\int {\dfrac{a}{{1 - ay}}dy} \] in equation (i)
\[ \Rightarrow \log \left( {a + x} \right) = \log y - \log \left( {1 - ay} \right) + \log c\]
Applying quotient formula of logarithm:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{y}{{\left( {1 - ay} \right)}} + \log c\]
Now applying the product formula:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Simplify the above equation using antilogarithm formula:
\[ \Rightarrow \left( {a + x} \right) = \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Multiply both sides by \[\left( {1 - ay} \right)\]:
\[ \Rightarrow \left( {a + x} \right)\left( {1 - ay} \right) = cy\]
Option ‘B’ is correct
Note: Students often do a mistake when they integrate \[\int {\dfrac{a}{{1 - ay}}dy} \]. When they used substitution method, they often miss to put negative sign during substitution. They wrote \[\int {\dfrac{a}{{1 - ay}}dy} = \int {\dfrac{1}{z}dz} \] which is incorrect. The correct one is \[\int {\dfrac{a}{{1 - ay}}dy} = - \int {\dfrac{1}{z}dz} \].
Formula Used: \[\int {\dfrac{1}{x}dx} = \log x + c\]
Product formula of logarithm:
\[\log ab = \log a + \log b\]
Quotient formula of logarithm:
\[\log \dfrac{a}{b} = \log a - \log b\]
Complete step by step solution: Given differential equation is:
\[y - x\dfrac{{dy}}{{dx}} = a\left( {{y^2} + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}}\]
Add both sides by \[x\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}}\]
Calculating the value of \[\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y = a{y^2} + \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - a{y^2} = \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
Now we will separate the variables of the differential equation:
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y - a{y^2}}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
We can rewrite \[\dfrac{1}{{y\left( {1 - ay} \right)}}\] as sum of two terms.
\[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\]
Substitute \[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\] in \[\dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \left( {\dfrac{1}{y} + \dfrac{a}{{1 - ay}}} \right)dy\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{1}{y}dy + \dfrac{a}{{1 - ay}}dy\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \int {\dfrac{1}{y}dy} + \int {\dfrac{a}{{1 - ay}}dy} \]
Assume that \[{I_1} = \int {\dfrac{a}{{1 - ay}}dy} \]
Let \[1 - ay = z\]
Differentiate both sides:
\[ - ady = dz\]
Substitute \[ - ady = dz\] and \[1 - ay = z\] in \[{I_1}\]
\[{I_1} = - \int {\dfrac{1}{z}dz} \]
Applying the formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[{I_1} = - \log z + {c_1}\]
Substitute the value of z:
\[{I_1} = - \log \left( {1 - ay} \right) + {c_1}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \log x + {c_2}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dy}}{y}} = \log y + {c_3}\]
Substitute the values of \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} ,\,\int {\dfrac{1}{y}dy} ,\,\int {\dfrac{a}{{1 - ay}}dy} \] in equation (i)
\[ \Rightarrow \log \left( {a + x} \right) = \log y - \log \left( {1 - ay} \right) + \log c\]
Applying quotient formula of logarithm:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{y}{{\left( {1 - ay} \right)}} + \log c\]
Now applying the product formula:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Simplify the above equation using antilogarithm formula:
\[ \Rightarrow \left( {a + x} \right) = \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Multiply both sides by \[\left( {1 - ay} \right)\]:
\[ \Rightarrow \left( {a + x} \right)\left( {1 - ay} \right) = cy\]
Option ‘B’ is correct
Note: Students often do a mistake when they integrate \[\int {\dfrac{a}{{1 - ay}}dy} \]. When they used substitution method, they often miss to put negative sign during substitution. They wrote \[\int {\dfrac{a}{{1 - ay}}dy} = \int {\dfrac{1}{z}dz} \] which is incorrect. The correct one is \[\int {\dfrac{a}{{1 - ay}}dy} = - \int {\dfrac{1}{z}dz} \].
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

