
What is the solution of the differential equation \[y - x\dfrac{{dy}}{{dx}} = a\left( {{y^2} + \dfrac{{dy}}{{dx}}} \right)\]?
A. \[\left( {x + a} \right)\left( {x + ay} \right) = cy\]
B. \[\left( {x + a} \right)\left( {1 - ay} \right) = cy\]
C. \[\left( {x + a} \right)\left( {1 - ay} \right) = c\]
D. None of these
Answer
232.8k+ views
Hint: First we will find \[\dfrac{{dy}}{{dx}}\] in terms of x, y, a. Then separate all variables and take integration on both sides of the differential equation. Then integrating both sides of the differential equation and apply the logarithm formula to simplify the solution.
Formula Used: \[\int {\dfrac{1}{x}dx} = \log x + c\]
Product formula of logarithm:
\[\log ab = \log a + \log b\]
Quotient formula of logarithm:
\[\log \dfrac{a}{b} = \log a - \log b\]
Complete step by step solution: Given differential equation is:
\[y - x\dfrac{{dy}}{{dx}} = a\left( {{y^2} + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}}\]
Add both sides by \[x\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}}\]
Calculating the value of \[\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y = a{y^2} + \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - a{y^2} = \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
Now we will separate the variables of the differential equation:
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y - a{y^2}}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
We can rewrite \[\dfrac{1}{{y\left( {1 - ay} \right)}}\] as sum of two terms.
\[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\]
Substitute \[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\] in \[\dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \left( {\dfrac{1}{y} + \dfrac{a}{{1 - ay}}} \right)dy\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{1}{y}dy + \dfrac{a}{{1 - ay}}dy\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \int {\dfrac{1}{y}dy} + \int {\dfrac{a}{{1 - ay}}dy} \]
Assume that \[{I_1} = \int {\dfrac{a}{{1 - ay}}dy} \]
Let \[1 - ay = z\]
Differentiate both sides:
\[ - ady = dz\]
Substitute \[ - ady = dz\] and \[1 - ay = z\] in \[{I_1}\]
\[{I_1} = - \int {\dfrac{1}{z}dz} \]
Applying the formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[{I_1} = - \log z + {c_1}\]
Substitute the value of z:
\[{I_1} = - \log \left( {1 - ay} \right) + {c_1}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \log x + {c_2}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dy}}{y}} = \log y + {c_3}\]
Substitute the values of \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} ,\,\int {\dfrac{1}{y}dy} ,\,\int {\dfrac{a}{{1 - ay}}dy} \] in equation (i)
\[ \Rightarrow \log \left( {a + x} \right) = \log y - \log \left( {1 - ay} \right) + \log c\]
Applying quotient formula of logarithm:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{y}{{\left( {1 - ay} \right)}} + \log c\]
Now applying the product formula:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Simplify the above equation using antilogarithm formula:
\[ \Rightarrow \left( {a + x} \right) = \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Multiply both sides by \[\left( {1 - ay} \right)\]:
\[ \Rightarrow \left( {a + x} \right)\left( {1 - ay} \right) = cy\]
Option ‘B’ is correct
Note: Students often do a mistake when they integrate \[\int {\dfrac{a}{{1 - ay}}dy} \]. When they used substitution method, they often miss to put negative sign during substitution. They wrote \[\int {\dfrac{a}{{1 - ay}}dy} = \int {\dfrac{1}{z}dz} \] which is incorrect. The correct one is \[\int {\dfrac{a}{{1 - ay}}dy} = - \int {\dfrac{1}{z}dz} \].
Formula Used: \[\int {\dfrac{1}{x}dx} = \log x + c\]
Product formula of logarithm:
\[\log ab = \log a + \log b\]
Quotient formula of logarithm:
\[\log \dfrac{a}{b} = \log a - \log b\]
Complete step by step solution: Given differential equation is:
\[y - x\dfrac{{dy}}{{dx}} = a\left( {{y^2} + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}}\]
Add both sides by \[x\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}}\]
Calculating the value of \[\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y = a{y^2} + \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - a{y^2} = \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
Now we will separate the variables of the differential equation:
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y - a{y^2}}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
We can rewrite \[\dfrac{1}{{y\left( {1 - ay} \right)}}\] as sum of two terms.
\[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\]
Substitute \[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\] in \[\dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \left( {\dfrac{1}{y} + \dfrac{a}{{1 - ay}}} \right)dy\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{1}{y}dy + \dfrac{a}{{1 - ay}}dy\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \int {\dfrac{1}{y}dy} + \int {\dfrac{a}{{1 - ay}}dy} \]
Assume that \[{I_1} = \int {\dfrac{a}{{1 - ay}}dy} \]
Let \[1 - ay = z\]
Differentiate both sides:
\[ - ady = dz\]
Substitute \[ - ady = dz\] and \[1 - ay = z\] in \[{I_1}\]
\[{I_1} = - \int {\dfrac{1}{z}dz} \]
Applying the formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[{I_1} = - \log z + {c_1}\]
Substitute the value of z:
\[{I_1} = - \log \left( {1 - ay} \right) + {c_1}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \log x + {c_2}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dy}}{y}} = \log y + {c_3}\]
Substitute the values of \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} ,\,\int {\dfrac{1}{y}dy} ,\,\int {\dfrac{a}{{1 - ay}}dy} \] in equation (i)
\[ \Rightarrow \log \left( {a + x} \right) = \log y - \log \left( {1 - ay} \right) + \log c\]
Applying quotient formula of logarithm:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{y}{{\left( {1 - ay} \right)}} + \log c\]
Now applying the product formula:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Simplify the above equation using antilogarithm formula:
\[ \Rightarrow \left( {a + x} \right) = \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Multiply both sides by \[\left( {1 - ay} \right)\]:
\[ \Rightarrow \left( {a + x} \right)\left( {1 - ay} \right) = cy\]
Option ‘B’ is correct
Note: Students often do a mistake when they integrate \[\int {\dfrac{a}{{1 - ay}}dy} \]. When they used substitution method, they often miss to put negative sign during substitution. They wrote \[\int {\dfrac{a}{{1 - ay}}dy} = \int {\dfrac{1}{z}dz} \] which is incorrect. The correct one is \[\int {\dfrac{a}{{1 - ay}}dy} = - \int {\dfrac{1}{z}dz} \].
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

