
What is the solution of the differential equation \[y - x\dfrac{{dy}}{{dx}} = a\left( {{y^2} + \dfrac{{dy}}{{dx}}} \right)\]?
A. \[\left( {x + a} \right)\left( {x + ay} \right) = cy\]
B. \[\left( {x + a} \right)\left( {1 - ay} \right) = cy\]
C. \[\left( {x + a} \right)\left( {1 - ay} \right) = c\]
D. None of these
Answer
162.3k+ views
Hint: First we will find \[\dfrac{{dy}}{{dx}}\] in terms of x, y, a. Then separate all variables and take integration on both sides of the differential equation. Then integrating both sides of the differential equation and apply the logarithm formula to simplify the solution.
Formula Used: \[\int {\dfrac{1}{x}dx} = \log x + c\]
Product formula of logarithm:
\[\log ab = \log a + \log b\]
Quotient formula of logarithm:
\[\log \dfrac{a}{b} = \log a - \log b\]
Complete step by step solution: Given differential equation is:
\[y - x\dfrac{{dy}}{{dx}} = a\left( {{y^2} + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}}\]
Add both sides by \[x\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}}\]
Calculating the value of \[\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y = a{y^2} + \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - a{y^2} = \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
Now we will separate the variables of the differential equation:
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y - a{y^2}}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
We can rewrite \[\dfrac{1}{{y\left( {1 - ay} \right)}}\] as sum of two terms.
\[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\]
Substitute \[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\] in \[\dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \left( {\dfrac{1}{y} + \dfrac{a}{{1 - ay}}} \right)dy\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{1}{y}dy + \dfrac{a}{{1 - ay}}dy\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \int {\dfrac{1}{y}dy} + \int {\dfrac{a}{{1 - ay}}dy} \]
Assume that \[{I_1} = \int {\dfrac{a}{{1 - ay}}dy} \]
Let \[1 - ay = z\]
Differentiate both sides:
\[ - ady = dz\]
Substitute \[ - ady = dz\] and \[1 - ay = z\] in \[{I_1}\]
\[{I_1} = - \int {\dfrac{1}{z}dz} \]
Applying the formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[{I_1} = - \log z + {c_1}\]
Substitute the value of z:
\[{I_1} = - \log \left( {1 - ay} \right) + {c_1}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \log x + {c_2}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dy}}{y}} = \log y + {c_3}\]
Substitute the values of \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} ,\,\int {\dfrac{1}{y}dy} ,\,\int {\dfrac{a}{{1 - ay}}dy} \] in equation (i)
\[ \Rightarrow \log \left( {a + x} \right) = \log y - \log \left( {1 - ay} \right) + \log c\]
Applying quotient formula of logarithm:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{y}{{\left( {1 - ay} \right)}} + \log c\]
Now applying the product formula:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Simplify the above equation using antilogarithm formula:
\[ \Rightarrow \left( {a + x} \right) = \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Multiply both sides by \[\left( {1 - ay} \right)\]:
\[ \Rightarrow \left( {a + x} \right)\left( {1 - ay} \right) = cy\]
Option ‘B’ is correct
Note: Students often do a mistake when they integrate \[\int {\dfrac{a}{{1 - ay}}dy} \]. When they used substitution method, they often miss to put negative sign during substitution. They wrote \[\int {\dfrac{a}{{1 - ay}}dy} = \int {\dfrac{1}{z}dz} \] which is incorrect. The correct one is \[\int {\dfrac{a}{{1 - ay}}dy} = - \int {\dfrac{1}{z}dz} \].
Formula Used: \[\int {\dfrac{1}{x}dx} = \log x + c\]
Product formula of logarithm:
\[\log ab = \log a + \log b\]
Quotient formula of logarithm:
\[\log \dfrac{a}{b} = \log a - \log b\]
Complete step by step solution: Given differential equation is:
\[y - x\dfrac{{dy}}{{dx}} = a\left( {{y^2} + \dfrac{{dy}}{{dx}}} \right)\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}}\]
Add both sides by \[x\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - x\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}} = a{y^2} + a\dfrac{{dy}}{{dx}} + x\dfrac{{dy}}{{dx}}\]
Calculating the value of \[\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y = a{y^2} + \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
\[ \Rightarrow y - a{y^2} = \left( {a + x} \right)\dfrac{{dy}}{{dx}}\]
Now we will separate the variables of the differential equation:
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y - a{y^2}}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
We can rewrite \[\dfrac{1}{{y\left( {1 - ay} \right)}}\] as sum of two terms.
\[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\]
Substitute \[\dfrac{1}{{y\left( {1 - ay} \right)}} = \dfrac{1}{y} + \dfrac{a}{{1 - ay}}\] in \[\dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{{dy}}{{y\left( {1 - ay} \right)}}\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \left( {\dfrac{1}{y} + \dfrac{a}{{1 - ay}}} \right)dy\]
\[ \Rightarrow \dfrac{{dx}}{{\left( {a + x} \right)}} = \dfrac{1}{y}dy + \dfrac{a}{{1 - ay}}dy\]
Taking integration on both sides:
\[ \Rightarrow \int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \int {\dfrac{1}{y}dy} + \int {\dfrac{a}{{1 - ay}}dy} \]
Assume that \[{I_1} = \int {\dfrac{a}{{1 - ay}}dy} \]
Let \[1 - ay = z\]
Differentiate both sides:
\[ - ady = dz\]
Substitute \[ - ady = dz\] and \[1 - ay = z\] in \[{I_1}\]
\[{I_1} = - \int {\dfrac{1}{z}dz} \]
Applying the formula \[\int {\dfrac{1}{x}dx} = \log x + c\]
\[{I_1} = - \log z + {c_1}\]
Substitute the value of z:
\[{I_1} = - \log \left( {1 - ay} \right) + {c_1}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} = \log x + {c_2}\]
By applying \[\int {\dfrac{1}{x}dx} = \log x + c\],we get \[\int {\dfrac{{dy}}{y}} = \log y + {c_3}\]
Substitute the values of \[\int {\dfrac{{dx}}{{\left( {a + x} \right)}}} ,\,\int {\dfrac{1}{y}dy} ,\,\int {\dfrac{a}{{1 - ay}}dy} \] in equation (i)
\[ \Rightarrow \log \left( {a + x} \right) = \log y - \log \left( {1 - ay} \right) + \log c\]
Applying quotient formula of logarithm:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{y}{{\left( {1 - ay} \right)}} + \log c\]
Now applying the product formula:
\[ \Rightarrow \log \left( {a + x} \right) = \log \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Simplify the above equation using antilogarithm formula:
\[ \Rightarrow \left( {a + x} \right) = \dfrac{{cy}}{{\left( {1 - ay} \right)}}\]
Multiply both sides by \[\left( {1 - ay} \right)\]:
\[ \Rightarrow \left( {a + x} \right)\left( {1 - ay} \right) = cy\]
Option ‘B’ is correct
Note: Students often do a mistake when they integrate \[\int {\dfrac{a}{{1 - ay}}dy} \]. When they used substitution method, they often miss to put negative sign during substitution. They wrote \[\int {\dfrac{a}{{1 - ay}}dy} = \int {\dfrac{1}{z}dz} \] which is incorrect. The correct one is \[\int {\dfrac{a}{{1 - ay}}dy} = - \int {\dfrac{1}{z}dz} \].
Recently Updated Pages
JEE Advanced Course 2025 - Subject List, Syllabus, Course, Details

Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

JEE Advanced Exam Pattern 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
