
What is the solution of the differential equation \[{\left( {x + y} \right)^2}\dfrac{{dy}}{{dx}} = {a^2}\]?
A. \[{\left( {x + y} \right)^2} = \dfrac{{{a^2}}}{2}x + c\]
B. \[{\left( {x + y} \right)^2} = {a^2}x + c\]
C. \[{\left( {x + y} \right)^2} = 2{a^2}x + c\]
D. None of these
Answer
216k+ views
Hint: The given differential equation is a homogeneous equation. Thus, to solve the given differential equation, we will use the substitution method.
Formula Used: Integration formula:
\[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + c\]
Homogeneous equation: The function \[f\left( {x,y} \right)\] is homogeneous with degree n if \[f\left( {\lambda x,\lambda y} \right) = {\lambda ^n}f\left( {x,y} \right)\] where \[\lambda \] is nonzero constant.
Complete step by step solution: Given differential equation is
\[{\left( {x + y} \right)^2}\dfrac{{dy}}{{dx}} = {a^2}\]
Rewrite the above equation:
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{a^2}}}{{{{\left( {x + y} \right)}^2}}}\]
Compare equation (i) with \[\dfrac{{dy}}{{dx}} = f\left( {x,y} \right)\]
\[f\left( {x,y} \right) = \dfrac{{{a^2}}}{{{{\left( {x + y} \right)}^2}}}\]
Putting \[x = \lambda x\] and \[y = \lambda y\]
\[f\left( {\lambda x,\lambda y} \right) = \dfrac{{{a^2}}}{{{{\left( {\lambda x + \lambda y} \right)}^2}}}\]
\[ \Rightarrow f\left( {\lambda x,\lambda y} \right) = \dfrac{{{a^2}}}{{{\lambda ^2}{{\left( {x + y} \right)}^2}}}\]
\[ \Rightarrow f\left( {\lambda x,\lambda y} \right) = {\lambda ^{ - 2}}f\left( {x,y} \right)\]
The given differential equation is a homogenous with degree 2.
Since given differential equation is a homogenous equation, we will apply substitution method.
Assume that,
\[x + y = z\]
Differentiate both sides with respect to x:
\[ \Rightarrow 1 + \dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}} - 1\]
Substitute \[x + y = z\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}} - 1\] in the given differential equation:
\[{z^2}\left( {\dfrac{{dz}}{{dx}} - 1} \right) = {a^2}\]
\[ \Rightarrow \left( {\dfrac{{dz}}{{dx}} - 1} \right) = \dfrac{{{a^2}}}{{{z^2}}}\]
\[ \Rightarrow \dfrac{{dz}}{{dx}} - 1 + 1 = \dfrac{{{a^2}}}{{{z^2}}} + 1\]
Add 1 on both sides
\[ \Rightarrow \dfrac{{dz}}{{dx}} = \dfrac{{{a^2} + {z^2}}}{{{z^2}}}\]
\[ \Rightarrow \dfrac{{{z^2}dz}}{{{a^2} + {z^2}}} = dx\]
Add and subtract \[{a^2}\] with numerator:
\[ \Rightarrow \dfrac{{{z^2} - {a^2} + {a^2}}}{{{a^2} + {z^2}}}dz = dx\]
\[ \Rightarrow \left( {1 - \dfrac{{{a^2}}}{{{a^2} + {z^2}}}} \right)dz = dx\]
Taking integration on both sides:
\[ \Rightarrow \int {dz} - \int {\dfrac{{{a^2}}}{{{a^2} + {z^2}}}dz} = \int {dx} \]
\[ \Rightarrow z - {a^2} \cdot \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{z}{a} = x + c\]
\[ \Rightarrow z - a{\tan ^{ - 1}}\dfrac{z}{a} = x + c\]
Substitute the value of z:
\[ \Rightarrow x + y - a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) = x + c\]
\[ \Rightarrow x + y - x = a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) + c\]
\[ \Rightarrow y = a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) + c\]
Option ‘D’ is correct
Note: Students often do a mistake to integrate \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} \]. They applied an incorrect formula that is \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = {\tan ^{ - 1}}\dfrac{x}{a} + c\]. They forgot to multiply \[\dfrac{1}{a}\]. The correct formula is \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + c\].
Formula Used: Integration formula:
\[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + c\]
Homogeneous equation: The function \[f\left( {x,y} \right)\] is homogeneous with degree n if \[f\left( {\lambda x,\lambda y} \right) = {\lambda ^n}f\left( {x,y} \right)\] where \[\lambda \] is nonzero constant.
Complete step by step solution: Given differential equation is
\[{\left( {x + y} \right)^2}\dfrac{{dy}}{{dx}} = {a^2}\]
Rewrite the above equation:
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{a^2}}}{{{{\left( {x + y} \right)}^2}}}\]
Compare equation (i) with \[\dfrac{{dy}}{{dx}} = f\left( {x,y} \right)\]
\[f\left( {x,y} \right) = \dfrac{{{a^2}}}{{{{\left( {x + y} \right)}^2}}}\]
Putting \[x = \lambda x\] and \[y = \lambda y\]
\[f\left( {\lambda x,\lambda y} \right) = \dfrac{{{a^2}}}{{{{\left( {\lambda x + \lambda y} \right)}^2}}}\]
\[ \Rightarrow f\left( {\lambda x,\lambda y} \right) = \dfrac{{{a^2}}}{{{\lambda ^2}{{\left( {x + y} \right)}^2}}}\]
\[ \Rightarrow f\left( {\lambda x,\lambda y} \right) = {\lambda ^{ - 2}}f\left( {x,y} \right)\]
The given differential equation is a homogenous with degree 2.
Since given differential equation is a homogenous equation, we will apply substitution method.
Assume that,
\[x + y = z\]
Differentiate both sides with respect to x:
\[ \Rightarrow 1 + \dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}} - 1\]
Substitute \[x + y = z\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{dz}}{{dx}} - 1\] in the given differential equation:
\[{z^2}\left( {\dfrac{{dz}}{{dx}} - 1} \right) = {a^2}\]
\[ \Rightarrow \left( {\dfrac{{dz}}{{dx}} - 1} \right) = \dfrac{{{a^2}}}{{{z^2}}}\]
\[ \Rightarrow \dfrac{{dz}}{{dx}} - 1 + 1 = \dfrac{{{a^2}}}{{{z^2}}} + 1\]
Add 1 on both sides
\[ \Rightarrow \dfrac{{dz}}{{dx}} = \dfrac{{{a^2} + {z^2}}}{{{z^2}}}\]
\[ \Rightarrow \dfrac{{{z^2}dz}}{{{a^2} + {z^2}}} = dx\]
Add and subtract \[{a^2}\] with numerator:
\[ \Rightarrow \dfrac{{{z^2} - {a^2} + {a^2}}}{{{a^2} + {z^2}}}dz = dx\]
\[ \Rightarrow \left( {1 - \dfrac{{{a^2}}}{{{a^2} + {z^2}}}} \right)dz = dx\]
Taking integration on both sides:
\[ \Rightarrow \int {dz} - \int {\dfrac{{{a^2}}}{{{a^2} + {z^2}}}dz} = \int {dx} \]
\[ \Rightarrow z - {a^2} \cdot \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{z}{a} = x + c\]
\[ \Rightarrow z - a{\tan ^{ - 1}}\dfrac{z}{a} = x + c\]
Substitute the value of z:
\[ \Rightarrow x + y - a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) = x + c\]
\[ \Rightarrow x + y - x = a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) + c\]
\[ \Rightarrow y = a{\tan ^{ - 1}}\left( {\dfrac{{x + y}}{a}} \right) + c\]
Option ‘D’ is correct
Note: Students often do a mistake to integrate \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} \]. They applied an incorrect formula that is \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = {\tan ^{ - 1}}\dfrac{x}{a} + c\]. They forgot to multiply \[\dfrac{1}{a}\]. The correct formula is \[\int {\dfrac{1}{{{a^2} + {x^2}}}dx} = \dfrac{1}{a}{\tan ^{ - 1}}\dfrac{x}{a} + c\].
Recently Updated Pages
JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Analytical Geometry - Free PDF Download

JEE Advanced 2022 Question Paper with Solutions PDF free Download

JEE Advanced 2026 Revision Notes for Differential Calculus - Free PDF Download

JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

