
What is the solution of the differential equation \[{e^{\dfrac{{dy}}{{dx}}}} = \left( {x + 1} \right)\], \[y\left( 0 \right) = 3\]?
A. \[y = x\log x - x + 2\]
B. \[y = \left( {x + 1} \right)\log \left| {x + 1} \right| - x + 3\]
C. \[y = \left( {x + 1} \right)\log \left| {x + 1} \right| + x + 3\]
D. \[y = x\log x + x + 3\]
E. \[y = - \left( {x + 1} \right)\log \left| {x + 1} \right| + x + 3\]
Answer
164.1k+ views
Hint: We will take the logarithm of both sides of the differential equation. Then we separate the variables of the differential equation and integrate both sides of the equation and solve the integration by using by parts formula. To calculate the integrating constant, we will put the initial condition.
Formula Used: Part parts formula:
\[\int {uvdx = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]dx} } \]
u is the first function and v is the second function.
Complete step by step solution: Given differential equation is:
\[{e^{\dfrac{{dy}}{{dx}}}} = \left( {x + 1} \right)\]
Taking logarithms on both sides:
\[ \Rightarrow \log \left( {{e^{\dfrac{{dy}}{{dx}}}}} \right) = \log \left( {x + 1} \right)\]
Applying the formula \[\log {e^a} = a\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \log \left( {x + 1} \right)\]
Separate the variables of the above equation:
\[ \Rightarrow dy = \log \left( {x + 1} \right)dx\]
Taking integrating both sides:
\[ \Rightarrow \int {dy} = \int {\log \left( {x + 1} \right)dx} \]
Applying by parts formula on the right side:
\[ \Rightarrow y = \log \left( {x + 1} \right)\int {dx} - \int {\left[ {\dfrac{d}{{dx}}\left( {\log \left( {x + 1} \right)} \right)\int {dx} } \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\left[ {\dfrac{1}{{x + 1}} \cdot x} \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{x}{{x + 1}}dx} \]
Add and subtract 1 with numerator of \[\int {\dfrac{x}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{{x + 1 - 1}}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {dx} + \int {\dfrac{1}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - x + \log \left| {x + 1} \right| + c\]
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + c\] ….(i)
Now putting x = 0 and y = 3:
\[ \Rightarrow 3 = \left( {0 + 1} \right)\log \left( {0 + 1} \right) - 0 + c\]
\[ \Rightarrow 3 = c\]
Putting c = 3 in equation (i)
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + 3\]
Option ‘B’ is correct
Note: Students often do mistake when they put initial condition. They put x =3 and y=0 which is incorrect. We have to put x = 0 and y = 3 in the solution of the differential equation to find the value of the integrating constant.
Formula Used: Part parts formula:
\[\int {uvdx = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]dx} } \]
u is the first function and v is the second function.
Complete step by step solution: Given differential equation is:
\[{e^{\dfrac{{dy}}{{dx}}}} = \left( {x + 1} \right)\]
Taking logarithms on both sides:
\[ \Rightarrow \log \left( {{e^{\dfrac{{dy}}{{dx}}}}} \right) = \log \left( {x + 1} \right)\]
Applying the formula \[\log {e^a} = a\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \log \left( {x + 1} \right)\]
Separate the variables of the above equation:
\[ \Rightarrow dy = \log \left( {x + 1} \right)dx\]
Taking integrating both sides:
\[ \Rightarrow \int {dy} = \int {\log \left( {x + 1} \right)dx} \]
Applying by parts formula on the right side:
\[ \Rightarrow y = \log \left( {x + 1} \right)\int {dx} - \int {\left[ {\dfrac{d}{{dx}}\left( {\log \left( {x + 1} \right)} \right)\int {dx} } \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\left[ {\dfrac{1}{{x + 1}} \cdot x} \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{x}{{x + 1}}dx} \]
Add and subtract 1 with numerator of \[\int {\dfrac{x}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{{x + 1 - 1}}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {dx} + \int {\dfrac{1}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - x + \log \left| {x + 1} \right| + c\]
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + c\] ….(i)
Now putting x = 0 and y = 3:
\[ \Rightarrow 3 = \left( {0 + 1} \right)\log \left( {0 + 1} \right) - 0 + c\]
\[ \Rightarrow 3 = c\]
Putting c = 3 in equation (i)
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + 3\]
Option ‘B’ is correct
Note: Students often do mistake when they put initial condition. They put x =3 and y=0 which is incorrect. We have to put x = 0 and y = 3 in the solution of the differential equation to find the value of the integrating constant.
Recently Updated Pages
JEE Advanced Percentile vs Marks 2025| Previous year's trends

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
IIT Kanpur Highest Package, Average & Median Salary

IMU CET SYLLABUS 2025

Difference Between Line Voltage and Phase Voltage

IIT Indore Average Package: Placement Overview

JEE Advanced Syllabus 2025 (OUT)

IIT Hyderabad Highest Package 2025: Detailed Placement Insights

Other Pages
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government College Seat Matrix
