
What is the solution of the differential equation \[{e^{\dfrac{{dy}}{{dx}}}} = \left( {x + 1} \right)\], \[y\left( 0 \right) = 3\]?
A. \[y = x\log x - x + 2\]
B. \[y = \left( {x + 1} \right)\log \left| {x + 1} \right| - x + 3\]
C. \[y = \left( {x + 1} \right)\log \left| {x + 1} \right| + x + 3\]
D. \[y = x\log x + x + 3\]
E. \[y = - \left( {x + 1} \right)\log \left| {x + 1} \right| + x + 3\]
Answer
164.4k+ views
Hint: We will take the logarithm of both sides of the differential equation. Then we separate the variables of the differential equation and integrate both sides of the equation and solve the integration by using by parts formula. To calculate the integrating constant, we will put the initial condition.
Formula Used: Part parts formula:
\[\int {uvdx = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]dx} } \]
u is the first function and v is the second function.
Complete step by step solution: Given differential equation is:
\[{e^{\dfrac{{dy}}{{dx}}}} = \left( {x + 1} \right)\]
Taking logarithms on both sides:
\[ \Rightarrow \log \left( {{e^{\dfrac{{dy}}{{dx}}}}} \right) = \log \left( {x + 1} \right)\]
Applying the formula \[\log {e^a} = a\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \log \left( {x + 1} \right)\]
Separate the variables of the above equation:
\[ \Rightarrow dy = \log \left( {x + 1} \right)dx\]
Taking integrating both sides:
\[ \Rightarrow \int {dy} = \int {\log \left( {x + 1} \right)dx} \]
Applying by parts formula on the right side:
\[ \Rightarrow y = \log \left( {x + 1} \right)\int {dx} - \int {\left[ {\dfrac{d}{{dx}}\left( {\log \left( {x + 1} \right)} \right)\int {dx} } \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\left[ {\dfrac{1}{{x + 1}} \cdot x} \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{x}{{x + 1}}dx} \]
Add and subtract 1 with numerator of \[\int {\dfrac{x}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{{x + 1 - 1}}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {dx} + \int {\dfrac{1}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - x + \log \left| {x + 1} \right| + c\]
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + c\] ….(i)
Now putting x = 0 and y = 3:
\[ \Rightarrow 3 = \left( {0 + 1} \right)\log \left( {0 + 1} \right) - 0 + c\]
\[ \Rightarrow 3 = c\]
Putting c = 3 in equation (i)
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + 3\]
Option ‘B’ is correct
Note: Students often do mistake when they put initial condition. They put x =3 and y=0 which is incorrect. We have to put x = 0 and y = 3 in the solution of the differential equation to find the value of the integrating constant.
Formula Used: Part parts formula:
\[\int {uvdx = u\int {vdx} - \int {\left[ {\dfrac{d}{{dx}}u\int {vdx} } \right]dx} } \]
u is the first function and v is the second function.
Complete step by step solution: Given differential equation is:
\[{e^{\dfrac{{dy}}{{dx}}}} = \left( {x + 1} \right)\]
Taking logarithms on both sides:
\[ \Rightarrow \log \left( {{e^{\dfrac{{dy}}{{dx}}}}} \right) = \log \left( {x + 1} \right)\]
Applying the formula \[\log {e^a} = a\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \log \left( {x + 1} \right)\]
Separate the variables of the above equation:
\[ \Rightarrow dy = \log \left( {x + 1} \right)dx\]
Taking integrating both sides:
\[ \Rightarrow \int {dy} = \int {\log \left( {x + 1} \right)dx} \]
Applying by parts formula on the right side:
\[ \Rightarrow y = \log \left( {x + 1} \right)\int {dx} - \int {\left[ {\dfrac{d}{{dx}}\left( {\log \left( {x + 1} \right)} \right)\int {dx} } \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\left[ {\dfrac{1}{{x + 1}} \cdot x} \right]dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{x}{{x + 1}}dx} \]
Add and subtract 1 with numerator of \[\int {\dfrac{x}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {\dfrac{{x + 1 - 1}}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - \int {dx} + \int {\dfrac{1}{{x + 1}}dx} \]
\[ \Rightarrow y = \log \left( {x + 1} \right) \cdot x - x + \log \left| {x + 1} \right| + c\]
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + c\] ….(i)
Now putting x = 0 and y = 3:
\[ \Rightarrow 3 = \left( {0 + 1} \right)\log \left( {0 + 1} \right) - 0 + c\]
\[ \Rightarrow 3 = c\]
Putting c = 3 in equation (i)
\[ \Rightarrow y = \left( {x + 1} \right)\log \left( {x + 1} \right) - x + 3\]
Option ‘B’ is correct
Note: Students often do mistake when they put initial condition. They put x =3 and y=0 which is incorrect. We have to put x = 0 and y = 3 in the solution of the differential equation to find the value of the integrating constant.
Recently Updated Pages
Difference Between AC and DC Generator

Difference Between Starch and Cellulose - Introduction and Structural Difference

Know About Difference Between Zener Breakdown and Avalanche Breakdown

Stefan Boltzmann Law - Definition and Equation

Thermodynamics: Introduction, Laws, Systems, Notes PDF & Thermal Equilibrium

Thermodynamics and Thermochemistry- Definition, Equation, Laws, Difference, and Facts

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations
