
What is the solution of the differential equation \[\cos y log\left( {\sec x + \tan x} \right)dx = \cos x log\left( {\sec y + \tan y} \right)dy\]?
A. \[\sec^{2}x + \sec^{2}y = c\]
B. \[\sec x + \sec y = c\]
C. \[\sec x - \sec y = c\]
D. None of these
Answer
164.4k+ views
Hint: Here, the first order differential equation is given. First, simplify the given equation by using the trigonometric formulas. Then, integrate both sides of the equation with respect to the corresponding variables. After that, solve the left-hand side integral by using the U-substitution method. In the end, solve the integrals to get the solution of the differential equation.
Formula Used: \[\dfrac{1}{{\cos x}} = \sec x\]
\[\dfrac{d}{{dx}}\left( {\sec x} \right) = log\left( {\sec x + \tan x} \right)\]
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
Complete step by step solution: The given differential equation is \[\cos y log\left( {\sec x + \tan x} \right)dx = \cos x log\left( {\sec y + \tan y} \right)dy\].
Simplify the given equation.
\[ \dfrac{{log\left( {\sec y + \tan y} \right)}}{{\cos y}}dy = \dfrac{{log\left( {\sec x + \tan x} \right)}}{{\cos x}} dx\]
Apply the trigonometric ratio \[\dfrac{1}{{\cos x}} = \sec x\].
\[\sec y log\left( {\sec y + \tan y} \right)dy = \sec x log\left( {\sec x + \tan x} \right) dx\]
Now integrate both sides with respect to the corresponding variables.
\[\int {\sec y log\left( {\sec y + \tan y} \right)dy} = \int {\sec x log\left( {\sec x + \tan x} \right) dx} \] \[.....\left( 1 \right)\]
It is difficult to find the integral of the above equation.
So, apply the substitution method on both sides.
Substitute \[\sec y = u\] and \[\sec x = v\].
Differentiating the substitute equations, we get
\[log\left( {\sec y + \tan y} \right)dy = du\] and \[log\left( {\sec x + \tan x} \right)dx = dv\]
Then, we get the equation \[\left( 1 \right)\] as
\[\int {u du} = \int {v dv} \]
Apply the integration rule \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\].
\[\dfrac{{{u^2}}}{2} = \dfrac{{{v^2}}}{2}+\dfrac{{{c}}}{2}\]
Resubstitute the values of \[u\], and \[v\].
\[\dfrac{{\sec^{2}y}}{2} = \dfrac{{\sec^{2}x}}{2} + \dfrac{c}{2}\]
\[ \Rightarrow \sec^{2}y = \sec^{2}x + c\]
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int {{x^n}} dx\]. They apply the formula \[\int {{x^n}} dx = {x^{n + 1}} + c\], which is an incorrect formula. The correct formula is \[\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\].
Formula Used: \[\dfrac{1}{{\cos x}} = \sec x\]
\[\dfrac{d}{{dx}}\left( {\sec x} \right) = log\left( {\sec x + \tan x} \right)\]
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\]
Complete step by step solution: The given differential equation is \[\cos y log\left( {\sec x + \tan x} \right)dx = \cos x log\left( {\sec y + \tan y} \right)dy\].
Simplify the given equation.
\[ \dfrac{{log\left( {\sec y + \tan y} \right)}}{{\cos y}}dy = \dfrac{{log\left( {\sec x + \tan x} \right)}}{{\cos x}} dx\]
Apply the trigonometric ratio \[\dfrac{1}{{\cos x}} = \sec x\].
\[\sec y log\left( {\sec y + \tan y} \right)dy = \sec x log\left( {\sec x + \tan x} \right) dx\]
Now integrate both sides with respect to the corresponding variables.
\[\int {\sec y log\left( {\sec y + \tan y} \right)dy} = \int {\sec x log\left( {\sec x + \tan x} \right) dx} \] \[.....\left( 1 \right)\]
It is difficult to find the integral of the above equation.
So, apply the substitution method on both sides.
Substitute \[\sec y = u\] and \[\sec x = v\].
Differentiating the substitute equations, we get
\[log\left( {\sec y + \tan y} \right)dy = du\] and \[log\left( {\sec x + \tan x} \right)dx = dv\]
Then, we get the equation \[\left( 1 \right)\] as
\[\int {u du} = \int {v dv} \]
Apply the integration rule \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}}\].
\[\dfrac{{{u^2}}}{2} = \dfrac{{{v^2}}}{2}+\dfrac{{{c}}}{2}\]
Resubstitute the values of \[u\], and \[v\].
\[\dfrac{{\sec^{2}y}}{2} = \dfrac{{\sec^{2}x}}{2} + \dfrac{c}{2}\]
\[ \Rightarrow \sec^{2}y = \sec^{2}x + c\]
Option ‘D’ is correct
Note: Students often do mistake to integrating \[\int {{x^n}} dx\]. They apply the formula \[\int {{x^n}} dx = {x^{n + 1}} + c\], which is an incorrect formula. The correct formula is \[\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\].
Recently Updated Pages
JEE Advanced Percentile vs Marks 2025| Previous year's trends

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
JEE Advanced 2025 Notes

IIT Roorkee Average Package 2025: Latest Placement Trends Updates

IIT Kanpur Highest Package, Average & Median Salary

IMU CET SYLLABUS 2025

IIT Indore Average Package: Placement Overview

JEE Advanced Syllabus 2025 (OUT)

Other Pages
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

JEE Main Chemistry Question Paper with Answer Keys and Solutions
