
\[\int_0^\pi {xf(\sin x)} dx = \] [IIT\[1982\]; Kurukshetra CEE\[1993\]]
E) \[\pi \int_0^\pi {f(\sin x)} dx\]
F) \[\dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
G) \[\dfrac{\pi }{2}\int_0^{\dfrac{\pi }{2}} {f(\sin x)} dx\]
H) None of these
Answer
218.7k+ views
Hint: in this question, we have to find the given integral. In order to find this, the properties of the definite integral are used. From appropriate property of definite integral given integration is evaluated.
Formula Used: The definite integral is the area under the curve between two fixed limits in which one limit is upper limit and other limit is lower limit.
Property of definite integral used is given as
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\]
If given function satisfy the condition\[f(a - x) = f(x)\]then we will use the above property of definite integral
Where
a is upper limit of integral and 0is a lower limit of integral.
Complete step by step solution: Given: Definite integral \[\int_0^\pi {xf(\sin x)} dx\]
Here in this integral upper limit is \[\pi \] and lower limit of integral is zero
Now check the condition \[f(a - x) = f(x)\]
\[\sin (\pi - x) = \sin (x)\]
Condition is satisfied
We know that
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\] If \[f(a - x) = f(x)\]
\[\int_0^\pi {xf(\sin x)} dx = \dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
So required integral is
\[\dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
Option ‘B’ is correct
Note: Here we must check that the given functions satisfy the condition \[f(a - x) = f(x)\]or not if functions satisfy the condition then only we apply the property.
The definite integral is the area under the curve between two fixed limits.
Let f(x) is a function and suppose integration of function f(x) is F(x) then definite integral of f(x) having upper limit b and lower limit a can be written in mathematical expression as
\[\int_a^b {f(x)} dx = F(b) - F(a)\]
Properties of the definite integrals are:
1) Interchanging the upper and lower limit: \[\int_b^a {f(x)} dx = - \int_a^b {f(x)} dx\]
2) \[\int_b^a {f(x)} dx = \int_b^a {f(t)} dt\]
3) \[\int_0^a {f(x)} dx = \int_0^a {f(a - x)} dx\]
4) \[\int_a^b {f(x)} dx = \int_a^c {f(x)} dx + \int_c^b {f(x)} dx\]
Formula Used: The definite integral is the area under the curve between two fixed limits in which one limit is upper limit and other limit is lower limit.
Property of definite integral used is given as
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\]
If given function satisfy the condition\[f(a - x) = f(x)\]then we will use the above property of definite integral
Where
a is upper limit of integral and 0is a lower limit of integral.
Complete step by step solution: Given: Definite integral \[\int_0^\pi {xf(\sin x)} dx\]
Here in this integral upper limit is \[\pi \] and lower limit of integral is zero
Now check the condition \[f(a - x) = f(x)\]
\[\sin (\pi - x) = \sin (x)\]
Condition is satisfied
We know that
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\] If \[f(a - x) = f(x)\]
\[\int_0^\pi {xf(\sin x)} dx = \dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
So required integral is
\[\dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
Option ‘B’ is correct
Note: Here we must check that the given functions satisfy the condition \[f(a - x) = f(x)\]or not if functions satisfy the condition then only we apply the property.
The definite integral is the area under the curve between two fixed limits.
Let f(x) is a function and suppose integration of function f(x) is F(x) then definite integral of f(x) having upper limit b and lower limit a can be written in mathematical expression as
\[\int_a^b {f(x)} dx = F(b) - F(a)\]
Properties of the definite integrals are:
1) Interchanging the upper and lower limit: \[\int_b^a {f(x)} dx = - \int_a^b {f(x)} dx\]
2) \[\int_b^a {f(x)} dx = \int_b^a {f(t)} dt\]
3) \[\int_0^a {f(x)} dx = \int_0^a {f(a - x)} dx\]
4) \[\int_a^b {f(x)} dx = \int_a^c {f(x)} dx + \int_c^b {f(x)} dx\]
Recently Updated Pages
A boat is to be manned by eight men of whom 2 can only class 11 maths JEE_Advanced

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

JEE Advanced 2021 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Carbohydrates Class 12 Important Questions JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

JEE Advanced Syllabus 2026

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

