
\[\int_0^\pi {xf(\sin x)} dx = \] [IIT\[1982\]; Kurukshetra CEE\[1993\]]
E) \[\pi \int_0^\pi {f(\sin x)} dx\]
F) \[\dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
G) \[\dfrac{\pi }{2}\int_0^{\dfrac{\pi }{2}} {f(\sin x)} dx\]
H) None of these
Answer
228.3k+ views
Hint: in this question, we have to find the given integral. In order to find this, the properties of the definite integral are used. From appropriate property of definite integral given integration is evaluated.
Formula Used: The definite integral is the area under the curve between two fixed limits in which one limit is upper limit and other limit is lower limit.
Property of definite integral used is given as
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\]
If given function satisfy the condition\[f(a - x) = f(x)\]then we will use the above property of definite integral
Where
a is upper limit of integral and 0is a lower limit of integral.
Complete step by step solution: Given: Definite integral \[\int_0^\pi {xf(\sin x)} dx\]
Here in this integral upper limit is \[\pi \] and lower limit of integral is zero
Now check the condition \[f(a - x) = f(x)\]
\[\sin (\pi - x) = \sin (x)\]
Condition is satisfied
We know that
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\] If \[f(a - x) = f(x)\]
\[\int_0^\pi {xf(\sin x)} dx = \dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
So required integral is
\[\dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
Option ‘B’ is correct
Note: Here we must check that the given functions satisfy the condition \[f(a - x) = f(x)\]or not if functions satisfy the condition then only we apply the property.
The definite integral is the area under the curve between two fixed limits.
Let f(x) is a function and suppose integration of function f(x) is F(x) then definite integral of f(x) having upper limit b and lower limit a can be written in mathematical expression as
\[\int_a^b {f(x)} dx = F(b) - F(a)\]
Properties of the definite integrals are:
1) Interchanging the upper and lower limit: \[\int_b^a {f(x)} dx = - \int_a^b {f(x)} dx\]
2) \[\int_b^a {f(x)} dx = \int_b^a {f(t)} dt\]
3) \[\int_0^a {f(x)} dx = \int_0^a {f(a - x)} dx\]
4) \[\int_a^b {f(x)} dx = \int_a^c {f(x)} dx + \int_c^b {f(x)} dx\]
Formula Used: The definite integral is the area under the curve between two fixed limits in which one limit is upper limit and other limit is lower limit.
Property of definite integral used is given as
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\]
If given function satisfy the condition\[f(a - x) = f(x)\]then we will use the above property of definite integral
Where
a is upper limit of integral and 0is a lower limit of integral.
Complete step by step solution: Given: Definite integral \[\int_0^\pi {xf(\sin x)} dx\]
Here in this integral upper limit is \[\pi \] and lower limit of integral is zero
Now check the condition \[f(a - x) = f(x)\]
\[\sin (\pi - x) = \sin (x)\]
Condition is satisfied
We know that
\[\int_0^a {xf(x)} dx = \dfrac{1}{2}a\int_0^a {f(x)} dx\] If \[f(a - x) = f(x)\]
\[\int_0^\pi {xf(\sin x)} dx = \dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
So required integral is
\[\dfrac{\pi }{2}\int_0^\pi {f(\sin x)} dx\]
Option ‘B’ is correct
Note: Here we must check that the given functions satisfy the condition \[f(a - x) = f(x)\]or not if functions satisfy the condition then only we apply the property.
The definite integral is the area under the curve between two fixed limits.
Let f(x) is a function and suppose integration of function f(x) is F(x) then definite integral of f(x) having upper limit b and lower limit a can be written in mathematical expression as
\[\int_a^b {f(x)} dx = F(b) - F(a)\]
Properties of the definite integrals are:
1) Interchanging the upper and lower limit: \[\int_b^a {f(x)} dx = - \int_a^b {f(x)} dx\]
2) \[\int_b^a {f(x)} dx = \int_b^a {f(t)} dt\]
3) \[\int_0^a {f(x)} dx = \int_0^a {f(a - x)} dx\]
4) \[\int_a^b {f(x)} dx = \int_a^c {f(x)} dx + \int_c^b {f(x)} dx\]
Recently Updated Pages
If the points P1 and P2 represent two complex numbers class 11 maths JEE_Advanced

If R and C denote the set of real numbers and complex class 11 maths JEE_Advanced

If complex numbers z1 z2 and z3 represent the vertices class 11 maths JEE_Advanced

Let S be a set of all the distinct numbers of the form class 11 maths JEE_Advanced

Find how many numbers can be formed with the digits class 11 maths JEE_Advanced

The equation of the lines on which the perpendiculars class 11 maths JEE_Advanced

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Other Pages
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

