
\[\int_{ - 4}^4 {\left| {x + 2} \right|} dx = \]
A) \[50\]
B) \[24\]
C) \[20\]
D) None of these
Answer
162k+ views
Hint: in this question, we have to find the given integral. In order to find this, the properties of modulus and formula of definite integral is used. Break modulus function into two limits one part is for negative limit and other for positive limit.
Formula Used: The definite integral is the area under the curve between two fixed limits.
Let f(x) is a function and suppose integration of function f(x) is F(x) then definite integral of f(x) having upper limit b and lower limit a can be written in mathematical expression as
\[\int_a^b {f(x)} dx = F(b) - F(a)\]
b is upper limit of integral and a is a lower limit of integral.
Property of mod function
If limit is less than zero
\[\left| {f(x)} \right| = - f(x)\]
If limit of function is greater than zero
\[\left| {f(x)} \right| = f(x)\]
Complete step by step solution: Given: Definite integral \[\int_{ - 4}^4 {\left| {x + 2} \right|} dx\]
Here in this integral upper limit is \[4\]and lower limit is \[ - 4\]
\[\int_{ - 4}^4 {\left| {x + 2} \right|} dx = \int_{ - 4}^{ - 2} { - (x + 2)} dx + \int_{ - 2}^4 {(x + 2)} dx\]
\[\int_{ - 4}^{ - 2} { - (x + 2)} dx + \int_{ - 2}^4 {(x + 2)} dx = [\dfrac{{ - {x^2}}}{2} - 2x]_{ - 4}^{ - 2} + [\dfrac{{{x^2}}}{2} + 2x]_{ - 2}^4\]
\[\begin{array}{l}[\dfrac{{ - {x^2}}}{2} - 2x]_{ - 4}^{ - 2} + [\dfrac{{{x^2}}}{2} + 2x]_{ - 2}^4 = [( - 2 + 4) - (8 + 8)] + [(8 + 8) - (2 - 4)]\\\end{array}\]
\[\begin{array}{l}[( - 2 + 4) - (8 + 8)] + [(8 + 8) - (2 - 4)] = 2 + 16 + 2\\\end{array}\]
\[ = 20\]
So required definite integral is
\[20\]
Option ‘C’ is correct
Note: We must remember that mod function always give positive value. So to make modulus positive break the function of modulus into two different limit.
The definite integral is the area under the curve between two fixed limits.
Let f(x) is a function and suppose integration of function f(x) is F(x) then definite integral of f(x) having upper limit b and lower limit a can be written in mathematical expression as
\[\int_a^b {f(x)} dx = F(b) - F(a)\]
Properties of the definite integrals are:
1) Interchanging the upper and lower limit: \[\int_b^a {f(x)} dx = - \int_a^b {f(x)} dx\]
2) \[\int_b^a {f(x)} dx = \int_b^a {f(t)} dt\]
3) \[\int_0^a {f(x)} dx = \int_0^a {f(a - x)} dx\]
4) \[\int_a^b {f(x)} dx = \int_a^c {f(x)} dx + \int_c^b {f(x)} dx\]
Formula Used: The definite integral is the area under the curve between two fixed limits.
Let f(x) is a function and suppose integration of function f(x) is F(x) then definite integral of f(x) having upper limit b and lower limit a can be written in mathematical expression as
\[\int_a^b {f(x)} dx = F(b) - F(a)\]
b is upper limit of integral and a is a lower limit of integral.
Property of mod function
If limit is less than zero
\[\left| {f(x)} \right| = - f(x)\]
If limit of function is greater than zero
\[\left| {f(x)} \right| = f(x)\]
Complete step by step solution: Given: Definite integral \[\int_{ - 4}^4 {\left| {x + 2} \right|} dx\]
Here in this integral upper limit is \[4\]and lower limit is \[ - 4\]
\[\int_{ - 4}^4 {\left| {x + 2} \right|} dx = \int_{ - 4}^{ - 2} { - (x + 2)} dx + \int_{ - 2}^4 {(x + 2)} dx\]
\[\int_{ - 4}^{ - 2} { - (x + 2)} dx + \int_{ - 2}^4 {(x + 2)} dx = [\dfrac{{ - {x^2}}}{2} - 2x]_{ - 4}^{ - 2} + [\dfrac{{{x^2}}}{2} + 2x]_{ - 2}^4\]
\[\begin{array}{l}[\dfrac{{ - {x^2}}}{2} - 2x]_{ - 4}^{ - 2} + [\dfrac{{{x^2}}}{2} + 2x]_{ - 2}^4 = [( - 2 + 4) - (8 + 8)] + [(8 + 8) - (2 - 4)]\\\end{array}\]
\[\begin{array}{l}[( - 2 + 4) - (8 + 8)] + [(8 + 8) - (2 - 4)] = 2 + 16 + 2\\\end{array}\]
\[ = 20\]
So required definite integral is
\[20\]
Option ‘C’ is correct
Note: We must remember that mod function always give positive value. So to make modulus positive break the function of modulus into two different limit.
The definite integral is the area under the curve between two fixed limits.
Let f(x) is a function and suppose integration of function f(x) is F(x) then definite integral of f(x) having upper limit b and lower limit a can be written in mathematical expression as
\[\int_a^b {f(x)} dx = F(b) - F(a)\]
Properties of the definite integrals are:
1) Interchanging the upper and lower limit: \[\int_b^a {f(x)} dx = - \int_a^b {f(x)} dx\]
2) \[\int_b^a {f(x)} dx = \int_b^a {f(t)} dt\]
3) \[\int_0^a {f(x)} dx = \int_0^a {f(a - x)} dx\]
4) \[\int_a^b {f(x)} dx = \int_a^c {f(x)} dx + \int_c^b {f(x)} dx\]
Recently Updated Pages
Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

JEE Advanced Exam Pattern 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
