
In a triangle \[ABC\], if \[2s = a + b + c\] and \[\left( {s - b} \right)\left( {s - c} \right) = x\sin^{2}\dfrac{A}{2}\]. Then find the value of \[x\].
A. \[bc\]
B. \[ca\]
C. \[ab\]
D. \[abc\]
Answer
163.5k+ views
Hint: First, we will apply trigonometric functions of half angles of triangles and simplify the expression. Solve the equation by taking the square on both sides to reach the required answer.
Formula used:
Trigonometric functions for half angles: In a triangle \[ABC\]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
The given expressions for a triangle \[ABC\] are:
\[2s = a + b + c\] and \[\left( {s - b} \right)\left( {s - c} \right) = x\sin^{2}\dfrac{A}{2}\]
Let’s apply the half-angle formula for the angle \[A\].
We get,
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
Take the square of both sides.
\[\sin^{2} \dfrac{A}{2} = \dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}\]
Multiply both sides by \[bc\].
\[bc \sin^{2} \dfrac{A}{2} = \left( {s - b} \right)\left( {s - c} \right)\]
Substitute the value from the given equation.
\[bc \sin^{2} \dfrac{A}{2} = x\sin^{2}\dfrac{A}{2}\]
Comparing both sides, we get
\[bc = x\]
Hence the correct option is A.
Note: Students do a mistake about the value of \[s\]. \[s\] is the semi-perimeter of the triangle. Thus, the value of \[s\] is \[\dfrac{{a + b + c}}{2}\]. Students should keep in mind that the trigonometry and half-angle formulas are used to determine the exact values of the trigonometric ratios of half of the standard angles. The positive and negative signs are depending on which quadrant the new half-angle is present.
Formula used:
Trigonometric functions for half angles: In a triangle \[ABC\]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
The given expressions for a triangle \[ABC\] are:
\[2s = a + b + c\] and \[\left( {s - b} \right)\left( {s - c} \right) = x\sin^{2}\dfrac{A}{2}\]
Let’s apply the half-angle formula for the angle \[A\].
We get,
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
Take the square of both sides.
\[\sin^{2} \dfrac{A}{2} = \dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}\]
Multiply both sides by \[bc\].
\[bc \sin^{2} \dfrac{A}{2} = \left( {s - b} \right)\left( {s - c} \right)\]
Substitute the value from the given equation.
\[bc \sin^{2} \dfrac{A}{2} = x\sin^{2}\dfrac{A}{2}\]
Comparing both sides, we get
\[bc = x\]
Hence the correct option is A.
Note: Students do a mistake about the value of \[s\]. \[s\] is the semi-perimeter of the triangle. Thus, the value of \[s\] is \[\dfrac{{a + b + c}}{2}\]. Students should keep in mind that the trigonometry and half-angle formulas are used to determine the exact values of the trigonometric ratios of half of the standard angles. The positive and negative signs are depending on which quadrant the new half-angle is present.
Recently Updated Pages
JEE Advanced Percentile vs Marks 2025| Previous year's trends

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
IIT Kanpur Highest Package, Average & Median Salary

IMU CET SYLLABUS 2025

Difference Between Line Voltage and Phase Voltage

IIT Indore Average Package: Placement Overview

JEE Advanced Syllabus 2025 (OUT)

IIT Hyderabad Highest Package 2025: Detailed Placement Insights

Other Pages
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government College Seat Matrix
