
In a triangle \[ABC\], if \[2s = a + b + c\] and \[\left( {s - b} \right)\left( {s - c} \right) = x\sin^{2}\dfrac{A}{2}\]. Then find the value of \[x\].
A. \[bc\]
B. \[ca\]
C. \[ab\]
D. \[abc\]
Answer
233.1k+ views
Hint: First, we will apply trigonometric functions of half angles of triangles and simplify the expression. Solve the equation by taking the square on both sides to reach the required answer.
Formula used:
Trigonometric functions for half angles: In a triangle \[ABC\]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
The given expressions for a triangle \[ABC\] are:
\[2s = a + b + c\] and \[\left( {s - b} \right)\left( {s - c} \right) = x\sin^{2}\dfrac{A}{2}\]
Let’s apply the half-angle formula for the angle \[A\].
We get,
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
Take the square of both sides.
\[\sin^{2} \dfrac{A}{2} = \dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}\]
Multiply both sides by \[bc\].
\[bc \sin^{2} \dfrac{A}{2} = \left( {s - b} \right)\left( {s - c} \right)\]
Substitute the value from the given equation.
\[bc \sin^{2} \dfrac{A}{2} = x\sin^{2}\dfrac{A}{2}\]
Comparing both sides, we get
\[bc = x\]
Hence the correct option is A.
Note: Students do a mistake about the value of \[s\]. \[s\] is the semi-perimeter of the triangle. Thus, the value of \[s\] is \[\dfrac{{a + b + c}}{2}\]. Students should keep in mind that the trigonometry and half-angle formulas are used to determine the exact values of the trigonometric ratios of half of the standard angles. The positive and negative signs are depending on which quadrant the new half-angle is present.
Formula used:
Trigonometric functions for half angles: In a triangle \[ABC\]
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
\[\sin \dfrac{B}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \]
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
Complete step by step solution:
The given expressions for a triangle \[ABC\] are:
\[2s = a + b + c\] and \[\left( {s - b} \right)\left( {s - c} \right) = x\sin^{2}\dfrac{A}{2}\]
Let’s apply the half-angle formula for the angle \[A\].
We get,
\[\sin \dfrac{A}{2} = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \]
Take the square of both sides.
\[\sin^{2} \dfrac{A}{2} = \dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}\]
Multiply both sides by \[bc\].
\[bc \sin^{2} \dfrac{A}{2} = \left( {s - b} \right)\left( {s - c} \right)\]
Substitute the value from the given equation.
\[bc \sin^{2} \dfrac{A}{2} = x\sin^{2}\dfrac{A}{2}\]
Comparing both sides, we get
\[bc = x\]
Hence the correct option is A.
Note: Students do a mistake about the value of \[s\]. \[s\] is the semi-perimeter of the triangle. Thus, the value of \[s\] is \[\dfrac{{a + b + c}}{2}\]. Students should keep in mind that the trigonometry and half-angle formulas are used to determine the exact values of the trigonometric ratios of half of the standard angles. The positive and negative signs are depending on which quadrant the new half-angle is present.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Vectors - Free PDF Download

JEE Advanced 2026 Revision Notes for Trigonometry - Free PDF Download

JEE Advanced 2026 Surface Chemistry Revision Notes - Free PDF Download

JEE Advanced Study Plan 2026: Expert Tips and Preparation Guide

JEE Advanced 2026 Revision Notes for Chemistry Solutions - Free PDF Download

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

