
In a triangle \[ABC\] , find the value of \[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}}\] .
A. \[\dfrac{{{a^2} - {b^2}}}{{{c^2}}}\]
B. \[\dfrac{{{a^2} + {b^2}}}{{{c^2}}}\]
C. \[\dfrac{{{c^2}}}{{{a^2} - {b^2}}}\]
D. \[\dfrac{{{c^2}}}{{{a^2} + {b^2}}}\]
Answer
204.6k+ views
Hint: Simplify the denominator of the required equation by using the property of the sum of angles and numerator by u\sing the trigonometric identity \[\sin\left( {A - B} \right) = \sin A \cos B - \cos A \sin B\]. Then, solve the equation by using the laws of sines and cosines to get the required answer.
Formula used:
In a triangle \[ABC\]
Law of sines: \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Laws of cosines:
\[\cos A = \dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}\]
\[\cos B = \dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}\]
\[\cos C = \dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}\]
Trigonometric identity: \[\sin\left( {A - B} \right) = \sin A \cos B - \cos A \sin B\]
Complete step by step solution:
The triangle \[ABC\] is given.
We know that, the sum of the internal angles of a triangle is \[180^{ \circ }\].
So, we get
\[A + B = \pi - C\]
Let’s simplify the given equation.
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\sin A \cos B - \cos A \sin B}}{{\sin\left( {\pi - C} \right)}}\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\sin A \cos B - \cos A \sin B}}{{\sin\left( C \right)}}\]
Now apply the laws of sines \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\].
We get,
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\dfrac{{a\sin C}}{c} \cos B - \cos A \dfrac{{b\sin C}}{c}}}{{\sin\left( C \right)}}\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{a}{c} \cos B - \dfrac{b}{c}\cos A\]
Apply the laws of cosines for the angles A and B.
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{a}{c} \left( {\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}} \right) - \dfrac{b}{c}\left( {\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{1}{{2{c^2}}} \left( {{c^2} + a{}^2 - {b^2} - {b^2} - c{}^2 + {a^2}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{1}{{2{c^2}}} \left( {2a{}^2 - 2{b^2}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{a{}^2 - {b^2}}}{{{c^2}}} \]
Hence the correct option is A.
Note: Students often confused with sum of sine formula and difference of sine formula. They used a wrong formula that is \[\sin\left( {A - B} \right) = \sin A \cos B + \cos A \sin B\]. The correct formulas are \[\sin\left({A - B} \right) = \sin A \cos B - \cos A \sin B\] and \[\sin\left( {A + B}\right) = \sin A \cos B + \cos A \sin B\].
Formula used:
In a triangle \[ABC\]
Law of sines: \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Laws of cosines:
\[\cos A = \dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}\]
\[\cos B = \dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}\]
\[\cos C = \dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}\]
Trigonometric identity: \[\sin\left( {A - B} \right) = \sin A \cos B - \cos A \sin B\]
Complete step by step solution:
The triangle \[ABC\] is given.
We know that, the sum of the internal angles of a triangle is \[180^{ \circ }\].
So, we get
\[A + B = \pi - C\]
Let’s simplify the given equation.
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\sin A \cos B - \cos A \sin B}}{{\sin\left( {\pi - C} \right)}}\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\sin A \cos B - \cos A \sin B}}{{\sin\left( C \right)}}\]
Now apply the laws of sines \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\].
We get,
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\dfrac{{a\sin C}}{c} \cos B - \cos A \dfrac{{b\sin C}}{c}}}{{\sin\left( C \right)}}\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{a}{c} \cos B - \dfrac{b}{c}\cos A\]
Apply the laws of cosines for the angles A and B.
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{a}{c} \left( {\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}} \right) - \dfrac{b}{c}\left( {\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{1}{{2{c^2}}} \left( {{c^2} + a{}^2 - {b^2} - {b^2} - c{}^2 + {a^2}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{1}{{2{c^2}}} \left( {2a{}^2 - 2{b^2}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{a{}^2 - {b^2}}}{{{c^2}}} \]
Hence the correct option is A.
Note: Students often confused with sum of sine formula and difference of sine formula. They used a wrong formula that is \[\sin\left( {A - B} \right) = \sin A \cos B + \cos A \sin B\]. The correct formulas are \[\sin\left({A - B} \right) = \sin A \cos B - \cos A \sin B\] and \[\sin\left( {A + B}\right) = \sin A \cos B + \cos A \sin B\].
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Electricity and Magnetism - Free PDF Download

JEE Advanced 2026 Matrices and Determinants Notes - Free PDF Download

JEE Advanced 2026 Revision Notes for Reactions of Benzene - Free PDF Download

JEE Advanced Chemistry Revision Notes

JEE Advanced 2026 Revision Notes for Mechanics - Free PDF Download

JEE Advanced 2026 Electrochemistry Notes - Free PDF Download

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Atomic Structure: Definition, Models, and Examples

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

Angle of Deviation in a Prism – Formula, Diagram & Applications

