
In a triangle \[ABC\] , find the value of \[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}}\] .
A. \[\dfrac{{{a^2} - {b^2}}}{{{c^2}}}\]
B. \[\dfrac{{{a^2} + {b^2}}}{{{c^2}}}\]
C. \[\dfrac{{{c^2}}}{{{a^2} - {b^2}}}\]
D. \[\dfrac{{{c^2}}}{{{a^2} + {b^2}}}\]
Answer
160.8k+ views
Hint: Simplify the denominator of the required equation by using the property of the sum of angles and numerator by u\sing the trigonometric identity \[\sin\left( {A - B} \right) = \sin A \cos B - \cos A \sin B\]. Then, solve the equation by using the laws of sines and cosines to get the required answer.
Formula used:
In a triangle \[ABC\]
Law of sines: \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Laws of cosines:
\[\cos A = \dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}\]
\[\cos B = \dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}\]
\[\cos C = \dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}\]
Trigonometric identity: \[\sin\left( {A - B} \right) = \sin A \cos B - \cos A \sin B\]
Complete step by step solution:
The triangle \[ABC\] is given.
We know that, the sum of the internal angles of a triangle is \[180^{ \circ }\].
So, we get
\[A + B = \pi - C\]
Let’s simplify the given equation.
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\sin A \cos B - \cos A \sin B}}{{\sin\left( {\pi - C} \right)}}\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\sin A \cos B - \cos A \sin B}}{{\sin\left( C \right)}}\]
Now apply the laws of sines \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\].
We get,
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\dfrac{{a\sin C}}{c} \cos B - \cos A \dfrac{{b\sin C}}{c}}}{{\sin\left( C \right)}}\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{a}{c} \cos B - \dfrac{b}{c}\cos A\]
Apply the laws of cosines for the angles A and B.
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{a}{c} \left( {\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}} \right) - \dfrac{b}{c}\left( {\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{1}{{2{c^2}}} \left( {{c^2} + a{}^2 - {b^2} - {b^2} - c{}^2 + {a^2}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{1}{{2{c^2}}} \left( {2a{}^2 - 2{b^2}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{a{}^2 - {b^2}}}{{{c^2}}} \]
Hence the correct option is A.
Note: Students often confused with sum of sine formula and difference of sine formula. They used a wrong formula that is \[\sin\left( {A - B} \right) = \sin A \cos B + \cos A \sin B\]. The correct formulas are \[\sin\left({A - B} \right) = \sin A \cos B - \cos A \sin B\] and \[\sin\left( {A + B}\right) = \sin A \cos B + \cos A \sin B\].
Formula used:
In a triangle \[ABC\]
Law of sines: \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\]
Laws of cosines:
\[\cos A = \dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}\]
\[\cos B = \dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}\]
\[\cos C = \dfrac{{{a^2} + b{}^2 - {c^2}}}{{2ab}}\]
Trigonometric identity: \[\sin\left( {A - B} \right) = \sin A \cos B - \cos A \sin B\]
Complete step by step solution:
The triangle \[ABC\] is given.
We know that, the sum of the internal angles of a triangle is \[180^{ \circ }\].
So, we get
\[A + B = \pi - C\]
Let’s simplify the given equation.
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\sin A \cos B - \cos A \sin B}}{{\sin\left( {\pi - C} \right)}}\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\sin A \cos B - \cos A \sin B}}{{\sin\left( C \right)}}\]
Now apply the laws of sines \[\dfrac{{\sin A}}{a} = \dfrac{{\sin B}}{b} = \dfrac{{\sin C}}{c}\].
We get,
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{\dfrac{{a\sin C}}{c} \cos B - \cos A \dfrac{{b\sin C}}{c}}}{{\sin\left( C \right)}}\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{a}{c} \cos B - \dfrac{b}{c}\cos A\]
Apply the laws of cosines for the angles A and B.
\[\dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{a}{c} \left( {\dfrac{{{c^2} + a{}^2 - {b^2}}}{{2ac}}} \right) - \dfrac{b}{c}\left( {\dfrac{{{b^2} + c{}^2 - {a^2}}}{{2bc}}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{1}{{2{c^2}}} \left( {{c^2} + a{}^2 - {b^2} - {b^2} - c{}^2 + {a^2}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{1}{{2{c^2}}} \left( {2a{}^2 - 2{b^2}} \right)\]
\[ \Rightarrow \dfrac{{\sin\left( {A - B} \right)}}{{\sin\left( {A + B} \right)}} = \dfrac{{a{}^2 - {b^2}}}{{{c^2}}} \]
Hence the correct option is A.
Note: Students often confused with sum of sine formula and difference of sine formula. They used a wrong formula that is \[\sin\left( {A - B} \right) = \sin A \cos B + \cos A \sin B\]. The correct formulas are \[\sin\left({A - B} \right) = \sin A \cos B - \cos A \sin B\] and \[\sin\left( {A + B}\right) = \sin A \cos B + \cos A \sin B\].
Recently Updated Pages
Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

JEE Advanced Exam Pattern 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
