
If \[{{x}^{\ln \left( \dfrac{y}{x} \right)}}\cdot {{y}^{\ln {{\left( xz \right)}^{2}}}}\cdot {{z}^{\ln \left( \dfrac{x}{y} \right)}}={{y}^{4\ln y}}\] for any \[x>1,y>1\] and \[z>1\], then which of the following is correct?
A. \[\ln y\] is the GM of \[\ln x,\ln x,\ln x\] and \[\ln z\]
B. \[\ln y\] is the AM of \[\ln x,\ln x,\ln x\] and \[\ln z\]
C. \[\ln y\] is the HM of \[\ln x,\ln x,\ln x\] and \[\ln z\]
D. \[\ln y\] is the AM of \[\ln ,Inx,\ln z\] and \[\ln z\]
Answer
217.5k+ views
Hint: In this question, we have to find the correct statement. By simplifying the given expression, we get the required statement. Applying logarithms on both sides we can able to simplify the given expression.
Formula Used: Some of the important logarithmic formulae:
$\begin{align}
& \log a\cdot \log b=\log (a+b) \\
& \dfrac{\log a}{\log b}=\log (a-b) \\
& \log {{a}^{n}}=n\log a \\
\end{align}$
Some of the important progressions and their means:
The arithmetic mean of $x$ and $y$ is $AM=\dfrac{x+y}{2}$
The geometric mean of $x$ and $y$ is $GM=\sqrt{ab}$
The harmonic mean of $x$ and $y$ is $HM=\dfrac{2ab}{a+b}$
Complete step by step solution: Given expression is
\[{{x}^{\ln \left( \dfrac{y}{x} \right)}}\cdot {{y}^{\ln {{\left( xz \right)}^{2}}}}\cdot {{z}^{\ln \left( \dfrac{x}{y} \right)}}={{y}^{4\ln y}}\]
Applying logarithms on both sides of the given expression,
\[\begin{align}
& {{x}^{\ln \left( \dfrac{y}{x} \right)}}\cdot {{y}^{\ln {{\left( xz \right)}^{2}}}}\cdot {{z}^{\ln \left( \dfrac{x}{y} \right)}}={{y}^{4\ln y}} \\
& \Rightarrow \ln \left( {{x}^{\ln \left( \dfrac{y}{z} \right)}}\cdot {{y}^{\ln {{\left( xz \right)}^{2}}}}\cdot {{z}^{\ln \left( \dfrac{x}{y} \right)}} \right)=\ln \left( {{y}^{4\ln y}} \right) \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& \Rightarrow \ln {{x}^{\ln \left( \dfrac{y}{z} \right)}}+\ln {{y}^{\ln {{\left( xz \right)}^{2}}}}+\ln {{z}^{\ln \left( \dfrac{x}{y} \right)}}=\ln \left( {{y}^{4\ln y}} \right) \\
& \Rightarrow \ln \left( \dfrac{y}{z} \right)\cdot \ln x+\ln {{\left( xz \right)}^{2}}\cdot \ln y+\ln \left( \dfrac{x}{y} \right)\cdot \ln z=4\ln y\cdot \ln y \\
& \Rightarrow \left( \ln y-\ln z \right)\ln x+2\left( \ln x+\ln z \right)\cdot \ln y+\left( \ln x-\ln y \right)\ln z=4\ln y\cdot \ln y \\
& \Rightarrow \ln y\cdot \ln x-\ln z\cdot \ln x+2\ln x\cdot \ln y+2\ln z\cdot \ln y+\ln x\cdot \ln z-\ln y\cdot \ln z=4\ln y.\ln y \\
\end{align}\]
Simplifying further, we get
\[\begin{align}
& 3\ln y\cdot \ln x+\ln z\cdot \ln y=4\ln y.\ln y \\
& \ln y\left( 3\ln x+\ln z \right)=4\ln y.\ln y \\
& 3\ln x+\ln z=4\ln y \\
& \Rightarrow \ln y=\dfrac{3\ln x+\ln z}{4} \\
\end{align}\]
Thus, we can write the obtained expression as
\[\Rightarrow \ln y=\dfrac{\ln x+\ln x+\ln x+\ln z}{4}\]
Since the obtained expression is the average of four terms that are $\ln x,\ln x,\ln x,\ln z$. So, by this, we can say that $\ln y$ is an arithmetic mean of the series with the four terms $\ln x,\ln x,\ln x,\ln z$.
Option ‘B’ is correct
Note: Here we need to remember that the average of all the terms or the ratio of the sum of all the terms of the series to the total number of terms is the definition of arithmetic mean. But here the term of the series is logarithmic terms.
Formula Used: Some of the important logarithmic formulae:
$\begin{align}
& \log a\cdot \log b=\log (a+b) \\
& \dfrac{\log a}{\log b}=\log (a-b) \\
& \log {{a}^{n}}=n\log a \\
\end{align}$
Some of the important progressions and their means:
The arithmetic mean of $x$ and $y$ is $AM=\dfrac{x+y}{2}$
The geometric mean of $x$ and $y$ is $GM=\sqrt{ab}$
The harmonic mean of $x$ and $y$ is $HM=\dfrac{2ab}{a+b}$
Complete step by step solution: Given expression is
\[{{x}^{\ln \left( \dfrac{y}{x} \right)}}\cdot {{y}^{\ln {{\left( xz \right)}^{2}}}}\cdot {{z}^{\ln \left( \dfrac{x}{y} \right)}}={{y}^{4\ln y}}\]
Applying logarithms on both sides of the given expression,
\[\begin{align}
& {{x}^{\ln \left( \dfrac{y}{x} \right)}}\cdot {{y}^{\ln {{\left( xz \right)}^{2}}}}\cdot {{z}^{\ln \left( \dfrac{x}{y} \right)}}={{y}^{4\ln y}} \\
& \Rightarrow \ln \left( {{x}^{\ln \left( \dfrac{y}{z} \right)}}\cdot {{y}^{\ln {{\left( xz \right)}^{2}}}}\cdot {{z}^{\ln \left( \dfrac{x}{y} \right)}} \right)=\ln \left( {{y}^{4\ln y}} \right) \\
\end{align}\]
On simplifying, we get
\[\begin{align}
& \Rightarrow \ln {{x}^{\ln \left( \dfrac{y}{z} \right)}}+\ln {{y}^{\ln {{\left( xz \right)}^{2}}}}+\ln {{z}^{\ln \left( \dfrac{x}{y} \right)}}=\ln \left( {{y}^{4\ln y}} \right) \\
& \Rightarrow \ln \left( \dfrac{y}{z} \right)\cdot \ln x+\ln {{\left( xz \right)}^{2}}\cdot \ln y+\ln \left( \dfrac{x}{y} \right)\cdot \ln z=4\ln y\cdot \ln y \\
& \Rightarrow \left( \ln y-\ln z \right)\ln x+2\left( \ln x+\ln z \right)\cdot \ln y+\left( \ln x-\ln y \right)\ln z=4\ln y\cdot \ln y \\
& \Rightarrow \ln y\cdot \ln x-\ln z\cdot \ln x+2\ln x\cdot \ln y+2\ln z\cdot \ln y+\ln x\cdot \ln z-\ln y\cdot \ln z=4\ln y.\ln y \\
\end{align}\]
Simplifying further, we get
\[\begin{align}
& 3\ln y\cdot \ln x+\ln z\cdot \ln y=4\ln y.\ln y \\
& \ln y\left( 3\ln x+\ln z \right)=4\ln y.\ln y \\
& 3\ln x+\ln z=4\ln y \\
& \Rightarrow \ln y=\dfrac{3\ln x+\ln z}{4} \\
\end{align}\]
Thus, we can write the obtained expression as
\[\Rightarrow \ln y=\dfrac{\ln x+\ln x+\ln x+\ln z}{4}\]
Since the obtained expression is the average of four terms that are $\ln x,\ln x,\ln x,\ln z$. So, by this, we can say that $\ln y$ is an arithmetic mean of the series with the four terms $\ln x,\ln x,\ln x,\ln z$.
Option ‘B’ is correct
Note: Here we need to remember that the average of all the terms or the ratio of the sum of all the terms of the series to the total number of terms is the definition of arithmetic mean. But here the term of the series is logarithmic terms.
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

