
If \[x = 1 + i\sqrt 3 \], \[y = 1 - i\sqrt 3 \], and \[z = 2\]. Then show that \[{x^P} + {y^P} = {z^P}\] for every prime \[p > 2\].
Answer
218.1k+ views
Hint: First, convert the given complex numbers \[x = 1 + i\sqrt 3 \], and \[y = 1 - i\sqrt 3 \] into the polar form of complex number. Then apply the De Moivre’s theorem to calculate the values of \[{x^P}\], and \[{y^P}\]. In the end, substitute the values in the given equation to get the required answer.
Formula used:
The polar form of a complex number \[z = a + ib\] is: \[z = r\left( {\cos\theta + i\sin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Complete step by step solution:
The given complex numbers are \[x = 1 + i\sqrt 3 \], \[y = 1 - i\sqrt 3 \], and \[z = 2\].
To Prove: \[{x^P} + {y^P} = {z^P}\] for every prime \[p > 2\].
Let’s convert the above complex numbers into polar form.
Multiply and divide \[x = 1 + i\sqrt 3 \] by 2.
We get,
\[x = 2\left( {\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\dfrac{\pi }{3} = \dfrac{1}{2}\] and \[\sin\dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\].
\[x = 2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 1 \right)\]
Multiply and divide \[y = 1 - i\sqrt 3 \] by 2.
We get,
\[y = 2\left( {\dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\left( { - \dfrac{\pi }{3}} \right) = \dfrac{1}{2}\] and \[\sin\left( { - \dfrac{\pi }{3}} \right) = \dfrac{{ - \sqrt 3 }}{2}\].
\[y = 2\left( {\cos\left( { - \dfrac{\pi }{3}} \right) + i\sin\left( { - \dfrac{\pi }{3}} \right)} \right)\]
Apply the trigonometric properties of angles \[\cos\left( { - \theta } \right) = \cos\theta \] and \[\sin\left( { - \theta } \right) = - \sin\theta \]
\[y = 2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 2 \right)\]
Let’s apply the De Moivre’s theorem on the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
We get,
\[{x^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {x^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 3 \right)\]
Also,
\[{y^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 4 \right)\]
Add the equations \[\left( 3 \right)\] and \[\left( 4 \right)\]. We get,
\[{x^P} + {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right] + \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\]
Simplify the above equation.
\[{x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}i\sin\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3} - {2^P}i\sin\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\left( {2\cos\dfrac{{P\pi }}{3}} \right)\]
We know that \[\cos\left( {\dfrac{{n\pi }}{3}} \right) = \dfrac{1}{2}\].
Then,
\[{x^P} + {y^P} = {2^P}\left( {2 \times \dfrac{1}{2}} \right)\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\]
Now substitute \[z = 2\] in the above equation.
\[{x^P} + {y^P} = {z^P}\]
Hence, proved.
Note: Students often get confused about the De Moivre’s theorem.
De Moivre’s Theorem: The power of a complex number in polar form is equal to raising the modulus to the same power and multiplying the argument by the same power.
Formula used:
The polar form of a complex number \[z = a + ib\] is: \[z = r\left( {\cos\theta + i\sin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Complete step by step solution:
The given complex numbers are \[x = 1 + i\sqrt 3 \], \[y = 1 - i\sqrt 3 \], and \[z = 2\].
To Prove: \[{x^P} + {y^P} = {z^P}\] for every prime \[p > 2\].
Let’s convert the above complex numbers into polar form.
Multiply and divide \[x = 1 + i\sqrt 3 \] by 2.
We get,
\[x = 2\left( {\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\dfrac{\pi }{3} = \dfrac{1}{2}\] and \[\sin\dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\].
\[x = 2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 1 \right)\]
Multiply and divide \[y = 1 - i\sqrt 3 \] by 2.
We get,
\[y = 2\left( {\dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\left( { - \dfrac{\pi }{3}} \right) = \dfrac{1}{2}\] and \[\sin\left( { - \dfrac{\pi }{3}} \right) = \dfrac{{ - \sqrt 3 }}{2}\].
\[y = 2\left( {\cos\left( { - \dfrac{\pi }{3}} \right) + i\sin\left( { - \dfrac{\pi }{3}} \right)} \right)\]
Apply the trigonometric properties of angles \[\cos\left( { - \theta } \right) = \cos\theta \] and \[\sin\left( { - \theta } \right) = - \sin\theta \]
\[y = 2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 2 \right)\]
Let’s apply the De Moivre’s theorem on the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
We get,
\[{x^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {x^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 3 \right)\]
Also,
\[{y^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 4 \right)\]
Add the equations \[\left( 3 \right)\] and \[\left( 4 \right)\]. We get,
\[{x^P} + {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right] + \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\]
Simplify the above equation.
\[{x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}i\sin\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3} - {2^P}i\sin\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\left( {2\cos\dfrac{{P\pi }}{3}} \right)\]
We know that \[\cos\left( {\dfrac{{n\pi }}{3}} \right) = \dfrac{1}{2}\].
Then,
\[{x^P} + {y^P} = {2^P}\left( {2 \times \dfrac{1}{2}} \right)\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\]
Now substitute \[z = 2\] in the above equation.
\[{x^P} + {y^P} = {z^P}\]
Hence, proved.
Note: Students often get confused about the De Moivre’s theorem.
De Moivre’s Theorem: The power of a complex number in polar form is equal to raising the modulus to the same power and multiplying the argument by the same power.
Recently Updated Pages
JEE Advanced Physics Syllabus 2026 – FREE PDF Download

JEE Advanced Chemistry Syllabus 2026 - Free PDF Download

JEE Advanced 2026 Syllabus for Maths- Download FREE PDF

TS EAMCET Seat Allotment

SRMJEEE 2023

TS EAMCET Application form 2023 & Exam Dates

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

JEE Advanced Syllabus 2026

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

