
If \[x = 1 + i\sqrt 3 \], \[y = 1 - i\sqrt 3 \], and \[z = 2\]. Then show that \[{x^P} + {y^P} = {z^P}\] for every prime \[p > 2\].
Answer
164.1k+ views
Hint: First, convert the given complex numbers \[x = 1 + i\sqrt 3 \], and \[y = 1 - i\sqrt 3 \] into the polar form of complex number. Then apply the De Moivre’s theorem to calculate the values of \[{x^P}\], and \[{y^P}\]. In the end, substitute the values in the given equation to get the required answer.
Formula used:
The polar form of a complex number \[z = a + ib\] is: \[z = r\left( {\cos\theta + i\sin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Complete step by step solution:
The given complex numbers are \[x = 1 + i\sqrt 3 \], \[y = 1 - i\sqrt 3 \], and \[z = 2\].
To Prove: \[{x^P} + {y^P} = {z^P}\] for every prime \[p > 2\].
Let’s convert the above complex numbers into polar form.
Multiply and divide \[x = 1 + i\sqrt 3 \] by 2.
We get,
\[x = 2\left( {\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\dfrac{\pi }{3} = \dfrac{1}{2}\] and \[\sin\dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\].
\[x = 2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 1 \right)\]
Multiply and divide \[y = 1 - i\sqrt 3 \] by 2.
We get,
\[y = 2\left( {\dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\left( { - \dfrac{\pi }{3}} \right) = \dfrac{1}{2}\] and \[\sin\left( { - \dfrac{\pi }{3}} \right) = \dfrac{{ - \sqrt 3 }}{2}\].
\[y = 2\left( {\cos\left( { - \dfrac{\pi }{3}} \right) + i\sin\left( { - \dfrac{\pi }{3}} \right)} \right)\]
Apply the trigonometric properties of angles \[\cos\left( { - \theta } \right) = \cos\theta \] and \[\sin\left( { - \theta } \right) = - \sin\theta \]
\[y = 2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 2 \right)\]
Let’s apply the De Moivre’s theorem on the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
We get,
\[{x^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {x^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 3 \right)\]
Also,
\[{y^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 4 \right)\]
Add the equations \[\left( 3 \right)\] and \[\left( 4 \right)\]. We get,
\[{x^P} + {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right] + \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\]
Simplify the above equation.
\[{x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}i\sin\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3} - {2^P}i\sin\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\left( {2\cos\dfrac{{P\pi }}{3}} \right)\]
We know that \[\cos\left( {\dfrac{{n\pi }}{3}} \right) = \dfrac{1}{2}\].
Then,
\[{x^P} + {y^P} = {2^P}\left( {2 \times \dfrac{1}{2}} \right)\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\]
Now substitute \[z = 2\] in the above equation.
\[{x^P} + {y^P} = {z^P}\]
Hence, proved.
Note: Students often get confused about the De Moivre’s theorem.
De Moivre’s Theorem: The power of a complex number in polar form is equal to raising the modulus to the same power and multiplying the argument by the same power.
Formula used:
The polar form of a complex number \[z = a + ib\] is: \[z = r\left( {\cos\theta + i\sin\theta } \right)\], where \[r = \sqrt {{a^2} + {b^2}} \]
Complete step by step solution:
The given complex numbers are \[x = 1 + i\sqrt 3 \], \[y = 1 - i\sqrt 3 \], and \[z = 2\].
To Prove: \[{x^P} + {y^P} = {z^P}\] for every prime \[p > 2\].
Let’s convert the above complex numbers into polar form.
Multiply and divide \[x = 1 + i\sqrt 3 \] by 2.
We get,
\[x = 2\left( {\dfrac{1}{2} + i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\dfrac{\pi }{3} = \dfrac{1}{2}\] and \[\sin\dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\].
\[x = 2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 1 \right)\]
Multiply and divide \[y = 1 - i\sqrt 3 \] by 2.
We get,
\[y = 2\left( {\dfrac{1}{2} - i\dfrac{{\sqrt 3 }}{2}} \right)\]
Now convert the above complex number into the polar form.
Apply the trigonometric angles \[\cos\left( { - \dfrac{\pi }{3}} \right) = \dfrac{1}{2}\] and \[\sin\left( { - \dfrac{\pi }{3}} \right) = \dfrac{{ - \sqrt 3 }}{2}\].
\[y = 2\left( {\cos\left( { - \dfrac{\pi }{3}} \right) + i\sin\left( { - \dfrac{\pi }{3}} \right)} \right)\]
Apply the trigonometric properties of angles \[\cos\left( { - \theta } \right) = \cos\theta \] and \[\sin\left( { - \theta } \right) = - \sin\theta \]
\[y = 2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)\] \[.....\left( 2 \right)\]
Let’s apply the De Moivre’s theorem on the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
We get,
\[{x^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} + i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {x^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 3 \right)\]
Also,
\[{y^P} = {\left[ {2\left( {\cos\dfrac{\pi }{3} - i\sin\dfrac{\pi }{3}} \right)} \right]^P}\]
\[ \Rightarrow {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\] \[.....\left( 4 \right)\]
Add the equations \[\left( 3 \right)\] and \[\left( 4 \right)\]. We get,
\[{x^P} + {y^P} = \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} + i\sin\dfrac{{P\pi }}{3}} \right)} \right] + \left[ {{2^P}\left( {\cos\dfrac{{P\pi }}{3} - i\sin\dfrac{{P\pi }}{3}} \right)} \right]\]
Simplify the above equation.
\[{x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}i\sin\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3} - {2^P}i\sin\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\cos\dfrac{{P\pi }}{3} + {2^P}\cos\dfrac{{P\pi }}{3}\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\left( {2\cos\dfrac{{P\pi }}{3}} \right)\]
We know that \[\cos\left( {\dfrac{{n\pi }}{3}} \right) = \dfrac{1}{2}\].
Then,
\[{x^P} + {y^P} = {2^P}\left( {2 \times \dfrac{1}{2}} \right)\]
\[ \Rightarrow {x^P} + {y^P} = {2^P}\]
Now substitute \[z = 2\] in the above equation.
\[{x^P} + {y^P} = {z^P}\]
Hence, proved.
Note: Students often get confused about the De Moivre’s theorem.
De Moivre’s Theorem: The power of a complex number in polar form is equal to raising the modulus to the same power and multiplying the argument by the same power.
Recently Updated Pages
JEE Advanced Percentile vs Marks 2025| Previous year's trends

JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

Trending doubts
IIT Kanpur Highest Package, Average & Median Salary

IMU CET SYLLABUS 2025

Difference Between Line Voltage and Phase Voltage

IIT Indore Average Package: Placement Overview

JEE Advanced Syllabus 2025 (OUT)

IIT Hyderabad Highest Package 2025: Detailed Placement Insights

Other Pages
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government College Seat Matrix
