
If $\left| x \right|<\dfrac{1}{2}$, what is the value of $1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty $?
A. ${{\left[ \dfrac{1-x}{1-2x} \right]}^{n}}$
B. ${{(1-x)}^{n}}$
C. ${{\left[ \dfrac{1-2x}{1-x} \right]}^{n}}$
D. ${{\left( \dfrac{1}{1-x} \right)}^{n}}$
Answer
216k+ views
Hint: Here we need to find the sum of the given infinite series. By observing the series, we come to know that, the series is a binomial expansion for a rational index. So, by using the binomial theorem for the rational index, we can find the required sum. By comparing the general binomial expansion with the given expansion, we get the required values for solving it.
Formula Used: Binomial theorem for rational index:
If $n$ is a rational number, then the sum of the infinite series exists only when $\left| x \right|<1$.
If $n$ is a rational number and $\left| x \right|<1$ then the binomial theorem says
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+....\infty ={{(1+x)}^{n}}$
Some of the basic expansions are:
$1-nx+\dfrac{n(n+1)}{2!}{{x}^{2}}-\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1+x)}^{-n}}$
$1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1-x)}^{-n}}$
(Note: Here observe the signs)
Complete step by step solution: The given series is
$1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty $ and $\left| x \right|<\dfrac{1}{2}$
On comparing the given series with the general binomial expansion, we get the similar one as
$1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1-x)}^{-n}}$
Here the only difference is $x=\dfrac{x}{1-x}$
So, we can substitute $x=\dfrac{x}{1-x}$ in the general term.
Thus, we get
$1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty ={{(1-\dfrac{x}{1-x})}^{-n}}$
On simplifying,
$\begin{align}
& {{(1-\dfrac{x}{1-x})}^{-n}}={{\left( \dfrac{1-x-x}{1-x} \right)}^{-n}} \\
& \text{ }={{\left( \dfrac{1-2x}{1-x} \right)}^{-n}} \\
\end{align}$
On applying ${{\left( \dfrac{a}{b} \right)}^{-n}}={{\left( \dfrac{b}{a} \right)}^{n}}$, we get
${{\left( 1-\dfrac{x}{1-x} \right)}^{-n}}={{\left( \dfrac{1-x}{1-2x} \right)}^{n}}$
Therefore, the value of given series $1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty $ is ${{\left[ \dfrac{1-x}{1-2x} \right]}^{n}}$.
Option ‘A’ is correct
Note: Here, we need to remember that, while comparing the given series with the general expansions, the signs between the terms and signs of their powers in the series should be observed carefully in order to get the correct value.
Formula Used: Binomial theorem for rational index:
If $n$ is a rational number, then the sum of the infinite series exists only when $\left| x \right|<1$.
If $n$ is a rational number and $\left| x \right|<1$ then the binomial theorem says
$1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+....\infty ={{(1+x)}^{n}}$
Some of the basic expansions are:
$1-nx+\dfrac{n(n+1)}{2!}{{x}^{2}}-\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1+x)}^{-n}}$
$1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1-x)}^{-n}}$
(Note: Here observe the signs)
Complete step by step solution: The given series is
$1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty $ and $\left| x \right|<\dfrac{1}{2}$
On comparing the given series with the general binomial expansion, we get the similar one as
$1+nx+\dfrac{n(n+1)}{2!}{{x}^{2}}+\dfrac{n(n+1)(n+2)}{3!}{{x}^{3}}+....\infty ={{(1-x)}^{-n}}$
Here the only difference is $x=\dfrac{x}{1-x}$
So, we can substitute $x=\dfrac{x}{1-x}$ in the general term.
Thus, we get
$1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty ={{(1-\dfrac{x}{1-x})}^{-n}}$
On simplifying,
$\begin{align}
& {{(1-\dfrac{x}{1-x})}^{-n}}={{\left( \dfrac{1-x-x}{1-x} \right)}^{-n}} \\
& \text{ }={{\left( \dfrac{1-2x}{1-x} \right)}^{-n}} \\
\end{align}$
On applying ${{\left( \dfrac{a}{b} \right)}^{-n}}={{\left( \dfrac{b}{a} \right)}^{n}}$, we get
${{\left( 1-\dfrac{x}{1-x} \right)}^{-n}}={{\left( \dfrac{1-x}{1-2x} \right)}^{n}}$
Therefore, the value of given series $1+n\left[ \dfrac{x}{1-x} \right]+\left[ \dfrac{n(n+1)}{2!} \right]{{\left[ \dfrac{x}{1-x} \right]}^{2}}+....\infty $ is ${{\left[ \dfrac{1-x}{1-2x} \right]}^{n}}$.
Option ‘A’ is correct
Note: Here, we need to remember that, while comparing the given series with the general expansions, the signs between the terms and signs of their powers in the series should be observed carefully in order to get the correct value.
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Difference Between Exothermic and Endothermic Reactions Explained

Top IIT Colleges in India 2025

IIT Fees Structure 2025

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

Understanding the Mechanisms and Key Differences in SN1 and SN2 Reactions

Other Pages
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

Hybridisation in Chemistry – Concept, Types & Applications

