
If in a triangle ABC, \[\left( {s - a} \right)\left( {s - b} \right) = s\left( {s - c} \right)\], then find angle C.
A. \[{90^ \circ }\]
B. \[{45^ \circ }\]
C. \[{30^ \circ }\]
D. \[{60^ \circ }\]
Answer
216k+ views
Hint: To solve this question we will apply the half-angle formula of a triangle. To calculate angle C, we will use half angle formula of \[\sin \dfrac{C}{2}\] and \[\cos \dfrac{C}{2}\]. Then we will calculate \[\tan \dfrac{C}{2}\]and by solving this we can calculate angle C.
Formula used:
Half angle formula for triangle:
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
Trigonometry formula
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Complete step by step solution:
Given equation is \[\left( {s - a} \right)\left( {s - b} \right) = s\left( {s - c} \right)\]
Rewrite the above equation:
\[\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}} = 1\] ……(i)
We know the half-angle formulas that are
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \] …..(ii)
And \[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \] …..(iii)
Divide (ii) by (iii)
\[\dfrac{{\sin \dfrac{C}{2}}}{{\cos \dfrac{C}{2}}} = \dfrac{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }}\]
Apply the formula \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[\tan \dfrac{C}{2} = \dfrac{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }}\]
Simplify the right side of the equation:
\[\tan \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \times \sqrt {\dfrac{{ab}}{{s\left( {s - c} \right)}}} \]
Cancel out \[\sqrt {ab} \]
\[\tan \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} \]
From equation (i) we get \[\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}} = 1\].
Substitute \[\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}} = 1\] in the above equation:
\[\tan \dfrac{C}{2} = \sqrt 1 \]
\[ \Rightarrow \tan \dfrac{C}{2} = 1\]
We know that, \[\tan \dfrac{\pi }{4} = 1\]
\[ \Rightarrow \tan \dfrac{C}{2} = \tan \dfrac{\pi }{4}\]
Compare both sides of the above equation:
\[ \Rightarrow \dfrac{C}{2} = \dfrac{\pi }{4}\]
Multiply both sides by 2
\[ \Rightarrow C = \dfrac{\pi }{4} \times 2\]
\[ \Rightarrow C = \dfrac{\pi }{2}\]
\[ \Rightarrow C = {90^ \circ }\]
Hence option A is the correct option.
Note: We can solve the given question by using the given equation. Divide the denominator and numerator by ab of the equation \[\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}} = 1\]. The equation becomes \[\dfrac{{\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}}}{{\dfrac{{s\left( {s - c} \right)}}{{ab}}}} = 1\]. Then using half angle formula, we get \[\dfrac{{{{\sin }^2}\dfrac{C}{2}}}{{{{\cos }^2}\dfrac{C}{2}}} = 1\]. By solving the equation, we can get the measurement of angle C.
Formula used:
Half angle formula for triangle:
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \]
\[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \]
Trigonometry formula
\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
Complete step by step solution:
Given equation is \[\left( {s - a} \right)\left( {s - b} \right) = s\left( {s - c} \right)\]
Rewrite the above equation:
\[\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}} = 1\] ……(i)
We know the half-angle formulas that are
\[\sin \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \] …..(ii)
And \[\cos \dfrac{C}{2} = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \] …..(iii)
Divide (ii) by (iii)
\[\dfrac{{\sin \dfrac{C}{2}}}{{\cos \dfrac{C}{2}}} = \dfrac{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }}\]
Apply the formula \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
\[\tan \dfrac{C}{2} = \dfrac{{\sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} }}{{\sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} }}\]
Simplify the right side of the equation:
\[\tan \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \times \sqrt {\dfrac{{ab}}{{s\left( {s - c} \right)}}} \]
Cancel out \[\sqrt {ab} \]
\[\tan \dfrac{C}{2} = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}}} \]
From equation (i) we get \[\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}} = 1\].
Substitute \[\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}} = 1\] in the above equation:
\[\tan \dfrac{C}{2} = \sqrt 1 \]
\[ \Rightarrow \tan \dfrac{C}{2} = 1\]
We know that, \[\tan \dfrac{\pi }{4} = 1\]
\[ \Rightarrow \tan \dfrac{C}{2} = \tan \dfrac{\pi }{4}\]
Compare both sides of the above equation:
\[ \Rightarrow \dfrac{C}{2} = \dfrac{\pi }{4}\]
Multiply both sides by 2
\[ \Rightarrow C = \dfrac{\pi }{4} \times 2\]
\[ \Rightarrow C = \dfrac{\pi }{2}\]
\[ \Rightarrow C = {90^ \circ }\]
Hence option A is the correct option.
Note: We can solve the given question by using the given equation. Divide the denominator and numerator by ab of the equation \[\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{s\left( {s - c} \right)}} = 1\]. The equation becomes \[\dfrac{{\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}}}{{\dfrac{{s\left( {s - c} \right)}}{{ab}}}} = 1\]. Then using half angle formula, we get \[\dfrac{{{{\sin }^2}\dfrac{C}{2}}}{{{{\cos }^2}\dfrac{C}{2}}} = 1\]. By solving the equation, we can get the measurement of angle C.
Recently Updated Pages
SRMJEEE Result 2024 (Out) Check all the Updates Here

UPESEAT Exam Date 2023

GUJCET Exam Date 2023

TS EAMCET Application form 2023 & Exam Dates

MHT CET Cutoff 2023|Check Previous Year Cut off, Cutoff Trend

TS EAMCET Seat Allotment

Trending doubts
Difference Between Line Voltage and Phase Voltage

JEE Advanced Marks Vs Rank 2025 – Understanding the Category-wise IIT Ranks Based on Scores

JEE Advanced Syllabus 2026

Top Engineering Colleges in Tamil Nadu: 2025 List, Rankings & Placement

JEE Advanced Previous Year Question Papers [2012 - 2025]

Boiling Point Formula

Other Pages
JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

