
If \[A = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\], then find the value of \[{A^{ - 1}}\].
A. \[I\]
B. \[ - I\]
C. \[ - A\]
D. \[A\]
Answer
161.1k+ views
Hint: First, calculate the determinant of the given matrix. Then calculate the adjoint matrix of the given matrix. In the end, substitute the values in the formula for the inverse of the matrix and get the required answer.
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\].
Let’s calculate the determinant of the given matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix.
We get,
\[\left| A \right| = 0\left( {0 - 0} \right) - 0\left( {0 - 0} \right) + 1\left( {0 - 1} \right)\]
\[ \Rightarrow \left| A \right| = - 1\] \[.....\left( 1 \right)\]
Now calculate the adjoint matrix of the given matrix by using the co-factor method.
Let’s calculate the co-factors of the matrix.
\[{A_{11}} ={\left( { - 1} \right)^{1 + 1}}\left[ {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 1}}\left( {1 \times 0 - 0 \times 0} \right) = 0\]
\[{A_{12}} =\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}{\left( { - 1} \right)^{1 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{13}} ={\left( { - 1} \right)^{1 + 3}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{21}} ={\left( { - 1} \right)^{2 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 1}}\left( {0 \times 0 - 0 \times 1} \right) = 0\]
\[{A_{22}} ={\left( { - 1} \right)^{2 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
={\left( { - 1} \right)^{2 + 2}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{23}} ={\left( { - 1} \right)^{2 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{31}} ={\left( { - 1} \right)^{3 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{3 + 1}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{32}} ={\left( { - 1} \right)^{3 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right] ={\left( { - 1} \right)^{3 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\0&1\end{array}} \right]= {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 1 - 0 \times 0} \right) = 0\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\].
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\] \[.....\left( 2 \right)\]
Substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
Then,
\[{A^{ - 1}} = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = A\]
Hence the correct option is D.
Note: If the determinant of a matrix is 0, then \[\dfrac{1}{{det A}}\] is undefined. So, the matrix with a 0 determinant has no inverse.
While calculating the inverse matrix, first check whether the determinant is nonzero or not.
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\].
Let’s calculate the determinant of the given matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix.
We get,
\[\left| A \right| = 0\left( {0 - 0} \right) - 0\left( {0 - 0} \right) + 1\left( {0 - 1} \right)\]
\[ \Rightarrow \left| A \right| = - 1\] \[.....\left( 1 \right)\]
Now calculate the adjoint matrix of the given matrix by using the co-factor method.
Let’s calculate the co-factors of the matrix.
\[{A_{11}} ={\left( { - 1} \right)^{1 + 1}}\left[ {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 1}}\left( {1 \times 0 - 0 \times 0} \right) = 0\]
\[{A_{12}} =\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}{\left( { - 1} \right)^{1 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{13}} ={\left( { - 1} \right)^{1 + 3}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{21}} ={\left( { - 1} \right)^{2 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 1}}\left( {0 \times 0 - 0 \times 1} \right) = 0\]
\[{A_{22}} ={\left( { - 1} \right)^{2 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
={\left( { - 1} \right)^{2 + 2}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{23}} ={\left( { - 1} \right)^{2 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{31}} ={\left( { - 1} \right)^{3 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{3 + 1}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{32}} ={\left( { - 1} \right)^{3 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right] ={\left( { - 1} \right)^{3 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\0&1\end{array}} \right]= {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 1 - 0 \times 0} \right) = 0\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\].
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\] \[.....\left( 2 \right)\]
Substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
Then,
\[{A^{ - 1}} = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = A\]
Hence the correct option is D.
Note: If the determinant of a matrix is 0, then \[\dfrac{1}{{det A}}\] is undefined. So, the matrix with a 0 determinant has no inverse.
While calculating the inverse matrix, first check whether the determinant is nonzero or not.
Recently Updated Pages
Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

JEE Advanced Exam Pattern 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
