
If \[A = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\], then find the value of \[{A^{ - 1}}\].
A. \[I\]
B. \[ - I\]
C. \[ - A\]
D. \[A\]
Answer
164.1k+ views
Hint: First, calculate the determinant of the given matrix. Then calculate the adjoint matrix of the given matrix. In the end, substitute the values in the formula for the inverse of the matrix and get the required answer.
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\].
Let’s calculate the determinant of the given matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix.
We get,
\[\left| A \right| = 0\left( {0 - 0} \right) - 0\left( {0 - 0} \right) + 1\left( {0 - 1} \right)\]
\[ \Rightarrow \left| A \right| = - 1\] \[.....\left( 1 \right)\]
Now calculate the adjoint matrix of the given matrix by using the co-factor method.
Let’s calculate the co-factors of the matrix.
\[{A_{11}} ={\left( { - 1} \right)^{1 + 1}}\left[ {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 1}}\left( {1 \times 0 - 0 \times 0} \right) = 0\]
\[{A_{12}} =\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}{\left( { - 1} \right)^{1 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{13}} ={\left( { - 1} \right)^{1 + 3}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{21}} ={\left( { - 1} \right)^{2 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 1}}\left( {0 \times 0 - 0 \times 1} \right) = 0\]
\[{A_{22}} ={\left( { - 1} \right)^{2 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
={\left( { - 1} \right)^{2 + 2}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{23}} ={\left( { - 1} \right)^{2 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{31}} ={\left( { - 1} \right)^{3 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{3 + 1}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{32}} ={\left( { - 1} \right)^{3 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right] ={\left( { - 1} \right)^{3 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\0&1\end{array}} \right]= {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 1 - 0 \times 0} \right) = 0\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\].
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\] \[.....\left( 2 \right)\]
Substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
Then,
\[{A^{ - 1}} = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = A\]
Hence the correct option is D.
Note: If the determinant of a matrix is 0, then \[\dfrac{1}{{det A}}\] is undefined. So, the matrix with a 0 determinant has no inverse.
While calculating the inverse matrix, first check whether the determinant is nonzero or not.
Formula used:
The determinant of a \[3 \times 3\] matrix \[A = \left[ {\begin{array}{*{20}{c}}{{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\{{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\{{a_{31}}}&{{a_{32}}}&{{a_{33}}}\end{array}} \right]\] is: \[\left| A \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{32}}{a_{23}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{31}}{a_{23}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{31}}{a_{22}}} \right)\]
The inverse matrix of a non-singular matrix \[A\] is: \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\]
Complete step by step solution:
The given matrix is \[A = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\].
Let’s calculate the determinant of the given matrix.
Apply the formula of the determinant of a \[3 \times 3\] matrix.
We get,
\[\left| A \right| = 0\left( {0 - 0} \right) - 0\left( {0 - 0} \right) + 1\left( {0 - 1} \right)\]
\[ \Rightarrow \left| A \right| = - 1\] \[.....\left( 1 \right)\]
Now calculate the adjoint matrix of the given matrix by using the co-factor method.
Let’s calculate the co-factors of the matrix.
\[{A_{11}} ={\left( { - 1} \right)^{1 + 1}}\left[ {\begin{array}{*{20}{c}}1&0\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 1}}\left( {1 \times 0 - 0 \times 0} \right) = 0\]
\[{A_{12}} =\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}{\left( { - 1} \right)^{1 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{13}} ={\left( { - 1} \right)^{1 + 3}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{1 + 3}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{21}} ={\left( { - 1} \right)^{2 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 1}}\left( {0 \times 0 - 0 \times 1} \right) = 0\]
\[{A_{22}} ={\left( { - 1} \right)^{2 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
={\left( { - 1} \right)^{2 + 2}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{23}} ={\left( { - 1} \right)^{2 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{2 + 3}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{31}} ={\left( { - 1} \right)^{3 + 1}}\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]
= {\left( { - 1} \right)^{3 + 1}}\left( {0 \times 0 - 1 \times 1} \right) = - 1\]
\[{A_{32}} ={\left( { - 1} \right)^{3 + 2}} \left[ {\begin{array}{*{20}{c}}0&1\\0&0\end{array}} \right] ={\left( { - 1} \right)^{3 + 2}}\left( {0 \times 0 - 1 \times 0} \right) = 0\]
\[{A_{33}} = {\left( { - 1} \right)^{3 + 3}}\left[ {\begin{array}{*{20}{c}}0&0\\0&1\end{array}} \right]= {\left( { - 1} \right)^{3 + 3}}\left( {0 \times 1 - 0 \times 0} \right) = 0\]
So, the co-factor matrix of the given matrix is \[\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\].
We know that the cofactor matrix is the transpose of the adjoint matrix.
So, the adjoint matrix of the given matrix is,
\[adj A = \left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\] \[.....\left( 2 \right)\]
Substitute the equations \[\left( 1 \right)\] and \[\left( 2 \right)\] in the formula of the inverse matrix \[{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}\left( {adj A} \right)\].
Then,
\[{A^{ - 1}} = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}0&0&{ - 1}\\0&{ - 1}&0\\{ - 1}&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}0&0&1\\0&1&0\\1&0&0\end{array}} \right]\]
\[ \Rightarrow {A^{ - 1}} = A\]
Hence the correct option is D.
Note: If the determinant of a matrix is 0, then \[\dfrac{1}{{det A}}\] is undefined. So, the matrix with a 0 determinant has no inverse.
While calculating the inverse matrix, first check whether the determinant is nonzero or not.
Recently Updated Pages
JEE Advanced 2021 Physics Question Paper 2 with Solutions

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2025 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced Marks vs Rank 2025 - Predict IIT Rank Based on Score

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE
