
If \[A\] and $B$ are two sets, then $(A-B)\cup (B-A)\cup (A\cap B)$ is equal to
A. Only \[A\].
B. \[A\cup B\]
C. \[\left( A\cup B' \right)\]
D. None of these.
Answer
161.1k+ views
Hint: The union of two sets like $A\cup B$ which is read as “ $A$ union $B$” can be defined as the set of all the elements present in set $A$ and in set $B$whereas the intersection of two sets like $A\cap B$ which is read as “ $A$ intersection $B$” can be defined as the set of all the elements which is common in both set $A$ and in set $B$. $A-B$ is a set which contains all the elements that are present in set $A$ but not in set $B$.
So to solve this question we will first make the Venn diagrams of $A-B,\,B-A$and $A\cap B$. Then we will use union of all the three sets that is$(A-B)\cup (B-A)\cup (A\cap B)$ in the Venn diagram and determine from the shaded portion that $(A-B)\cup (B-A)\cup (A\cap B)$is equal to which of the options given.
Complete step by step solution: We are given two sets \[A\] and $B$ and we have to find the value of $(A-B)\cup (B-A)\cup (A\cap B)$ .
First we will make the Venn diagram of $A-B$.

Now we will make the Venn diagram of $B-A$.

Now we will make the Venn diagram of $A\cap B$.

We will now use union in all the three sets $A-B,\,B-A$and $A\cap B$ that is $(A-B)\cup (B-A)\cup (A\cap B)$.

It means that $(A-B)\cup (B-A)\cup (A\cap B)$ will contain all the elements present in all the three sets $A-B,\,B-A$and $A\cap B$. And as $A-B,\,B-A$and $A\cap B$ has all elements from the set \[A\] and $B$then it means $(A-B)\cup (B-A)\cup (A\cap B)$ will contain all the elements of set \[A\] and $B$ that is \[A\cup B\]. Therefore $(A-B)\cup (B-A)\cup (A\cap B)$ is equals to \[A\cup B\].
If \[A\] and $B$ are two sets, then $(A-B)\cup (B-A)\cup (A\cap B)$ is equal to \[A\cup B\]
Option ‘B’ is correct
Note: We can also solve this question without using Venn diagram. L
$A-B$ will contain all the elements that are present in set $A$ but not in set $B$ and $B-A$ will contain all the elements present in set $B$ but not in set $A$.
So union of both $A-B$ and $B-A$ that is $(A-B)\cup (B-A)$ will have only those elements which are only present in set $A$ and set $B$ but are not common in both.
Now $A\cap B$ will contain all elements that is common in both set. Now union of $(A-B)\cup (B-A)\cup (A\cap B)$ will be,
$(A-B)\cup (B-A)\cup (A\cap B)=$Only $A\cup $ only $B\cup $ Common in both x and .
$=A\cup B$
So to solve this question we will first make the Venn diagrams of $A-B,\,B-A$and $A\cap B$. Then we will use union of all the three sets that is$(A-B)\cup (B-A)\cup (A\cap B)$ in the Venn diagram and determine from the shaded portion that $(A-B)\cup (B-A)\cup (A\cap B)$is equal to which of the options given.
Complete step by step solution: We are given two sets \[A\] and $B$ and we have to find the value of $(A-B)\cup (B-A)\cup (A\cap B)$ .
First we will make the Venn diagram of $A-B$.

Now we will make the Venn diagram of $B-A$.

Now we will make the Venn diagram of $A\cap B$.

We will now use union in all the three sets $A-B,\,B-A$and $A\cap B$ that is $(A-B)\cup (B-A)\cup (A\cap B)$.

It means that $(A-B)\cup (B-A)\cup (A\cap B)$ will contain all the elements present in all the three sets $A-B,\,B-A$and $A\cap B$. And as $A-B,\,B-A$and $A\cap B$ has all elements from the set \[A\] and $B$then it means $(A-B)\cup (B-A)\cup (A\cap B)$ will contain all the elements of set \[A\] and $B$ that is \[A\cup B\]. Therefore $(A-B)\cup (B-A)\cup (A\cap B)$ is equals to \[A\cup B\].
If \[A\] and $B$ are two sets, then $(A-B)\cup (B-A)\cup (A\cap B)$ is equal to \[A\cup B\]
Option ‘B’ is correct
Note: We can also solve this question without using Venn diagram. L
$A-B$ will contain all the elements that are present in set $A$ but not in set $B$ and $B-A$ will contain all the elements present in set $B$ but not in set $A$.
So union of both $A-B$ and $B-A$ that is $(A-B)\cup (B-A)$ will have only those elements which are only present in set $A$ and set $B$ but are not common in both.
Now $A\cap B$ will contain all elements that is common in both set. Now union of $(A-B)\cup (B-A)\cup (A\cap B)$ will be,
$(A-B)\cup (B-A)\cup (A\cap B)=$Only $A\cup $ only $B\cup $ Common in both x and .
$=A\cup B$
Recently Updated Pages
Crack JEE Advanced 2025 with Vedantu's Live Classes

JEE Advanced Maths Revision Notes

JEE Advanced Chemistry Revision Notes

Download Free JEE Advanced Revision Notes PDF Online for 2025

The students S1 S2 S10 are to be divided into 3 groups class 11 maths JEE_Advanced

Solutions Class 12 Notes JEE Advanced Chemistry [PDF]

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

JEE Advanced Cut Off 2024

JEE Advanced Exam Pattern 2025

Other Pages
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
