
A straight line moves so that the sum of the reciprocals of its intercepts on two perpendicular lines is constant, then the line passes through
A. A fixed point
B. A variable point
C. Origin
D. None of these
Answer
232.5k+ views
Hint: In this question, we are to find the point through which the given line passes. For this we use the equation of the line with the intercepts i.e., intercept form where the coordinate axes are the two perpendicular lines.
Formula Used: The equation of the line, that is passing through $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Where $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ is said to be the slope of the line.
We can also write it in the point-slope form as
$y-{{y}_{1}}=m(x-{{x}_{1}})$
Consider the x-intercept as $a$ and the y-intercept as $b$. Then the equation of the line (intercept form) is $\dfrac{x}{a}+\dfrac{y}{b}=1$
Complete step by step solution: Consider the two perpendicular lines as the coordinate axes. So, the intercepts are
the x-intercept is $a$ and the y-intercept is $b$.
Then the equation of the line (intercept form) is
$\dfrac{x}{a}+\dfrac{y}{b}=1\text{ }...(1)$
As per the question, the sum of the reciprocals of the intercepts is a constant. Consider $k$ is a constant. So, the equation we can frame is
$\begin{align}
& \dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{k} \\
& \Rightarrow \dfrac{k}{a}\text{+}\dfrac{k}{b}\text{=1 }...(2) \\
\end{align}$
On comparing (1) and (2), we get
$(x,y)=(k,k)$
Therefore, the obtained result is a fixed point, we can say that the line passes through this fixed point.
Option ‘A’ is correct
Note: Here we may go wrong with the constant. We need to remember that, the sum of the reciprocals of intercepts is equal to the (reciprocal) constant. On simplifying and equating the obtained equations, we get a point which is a fixed point.
Formula Used: The equation of the line, that is passing through $({{x}_{1}},{{y}_{1}})$ and $({{x}_{2}},{{y}_{2}})$ is
$y-{{y}_{1}}=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}(x-{{x}_{1}})$
Where $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ is said to be the slope of the line.
We can also write it in the point-slope form as
$y-{{y}_{1}}=m(x-{{x}_{1}})$
Consider the x-intercept as $a$ and the y-intercept as $b$. Then the equation of the line (intercept form) is $\dfrac{x}{a}+\dfrac{y}{b}=1$
Complete step by step solution: Consider the two perpendicular lines as the coordinate axes. So, the intercepts are
the x-intercept is $a$ and the y-intercept is $b$.
Then the equation of the line (intercept form) is
$\dfrac{x}{a}+\dfrac{y}{b}=1\text{ }...(1)$
As per the question, the sum of the reciprocals of the intercepts is a constant. Consider $k$ is a constant. So, the equation we can frame is
$\begin{align}
& \dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{k} \\
& \Rightarrow \dfrac{k}{a}\text{+}\dfrac{k}{b}\text{=1 }...(2) \\
\end{align}$
On comparing (1) and (2), we get
$(x,y)=(k,k)$
Therefore, the obtained result is a fixed point, we can say that the line passes through this fixed point.
Option ‘A’ is correct
Note: Here we may go wrong with the constant. We need to remember that, the sum of the reciprocals of intercepts is equal to the (reciprocal) constant. On simplifying and equating the obtained equations, we get a point which is a fixed point.
Recently Updated Pages
JEE Advanced 2026 Revision Notes for Chemistry Energetics - Free PDF Download

JEE Advanced 2021 Chemistry Question Paper 1 with Solutions

JEE Advanced 2022 Physics Question Paper 2 with Solutions

JEE Advanced 2022 Chemistry Question Paper 2 with Solutions

JEE Advanced 2021 Chemistry Question Paper 2 with Solutions

JEE Advanced 2022 Maths Question Paper 2 with Solutions

Trending doubts
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Difference Between Exothermic and Endothermic Reactions Explained

IIT CSE Cutoff: Category‐Wise Opening and Closing Ranks

IIT Fees Structure 2025

Top IIT Colleges in India 2025

Other Pages
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

