Amphibole Mineral

The amphibole mineral is a mineral belonging to the inosilicate classification of minerals. They are known for and classified as such because of their structural configuration that leads to the formation of a prism or needle-like structures. The amphibole is made up of double-chain silica (SiO4) tetrahedra. In these tetrahedra, the two chains of silica are linked with one another at the vertices and typically contain ions of iron and/or magnesium in their structures. The Amphibole group of minerals is a supergroup according to the International Mineralogical Association as there are two more groups and several subgroups classified within it. 

Naming of Amphibole

The amphibole meaning is derived from the ancient Greek language from the root word amphibolos. The term amphibolos means “double entendre” i.e. ambiguousness. Deriving amphibole meaning from the amphibolos term, the mineral amphibole was first used by René Just Haüy. With this nomenclature tremolite, actinolite and hornblende. Because of the composition and appearance of these minerals, these particular minerals were named amphibole meaning something that is showing dual and ambiguous properties. 

Physical Properties of Amphibole

The following are the physical properties and chemical characteristics of the amphibole mineral:

  • Amphibole is made up of double chains of silica in a tetrahedral structure with both the chains being linked to each other at their vertices.

  • The crystalline structure of the amphibole contains ions of iron and/or magnesium within it.

  • The amphibole mineral can be found in different colors such as green, black, white, yellow, brown or some of its forms can be colorless as well.

  • The amphibole structure is known for the formation of two different types of crystals. The two types of crystals formed are either prismatic or needle-like in shape.

  • The amphibole chemical composition is essentially made up of hydroxyl or halogen groups within their crystal structure.

  • Although, there are similarities in-between certain properties of pyroxene and amphibole, the basic structure of the amphibole crystal is different from the pyroxene crystal as the pyroxene crystal is made up of a single chain of silicates and the amphibole is made up of double chains of silica.

  • Amphiboles form cleavage planes at around 120 degrees which is different from the pyroxenes as pyroxenes form the cleavage planes around 90 degrees.

  • The objects classified in the amphibole mineral group are also specifically less dense than the corresponding objects that belong to the pyroxene category.

  • Optically as well the properties of amphiboles are interesting because optically the amphiboles due to their unique amphibole structure display different colors when viewed or observed from different angles. They have a very strong pleochroism characteristic and a smaller angle of extinction on the plane of symmetry.

Characteristics of Amphibole

The minerals of the amphiboles can originate from either the igneous or metamorphic origin. The common forms of amphibole are present in both the intermediate to felsic igneous rocks rather than mafic igneous rocks because of the iron or magnesium ion content. The characteristics of amphibole found in the rocks and determined by the formation are given as follows:

  • The property of the amphibole structure to have double silica chains because of the higher silica content and higher dissolved water content found in the more evolved magmas. These are the conditions that favor the formation of amphiboles over the formation of pyroxenes.

  • Amphiboles are primary constituents of the amphibolites which also include actinolite, hornblende, plagioclase, etc.

  • Andesites are the ones that contain the highest amount of amphiboles that is 20% of the total composition.

  • Another one of the minerals included in the amphibole is the hornblende and is widespread in the igneous and metamorphic rocks and more prominently in the syenites and diorites.


  • The naturally occurring amphibole sometimes contains calcium as the main constituent. 

  • The amphiboles formed include the metamorphic rocks the ones developed in limestones by the contact metamorphism and also the ones formed by the alteration of other ferromagnesian minerals like the hornblende which is a product of the pyroxene. After pyroxene, the pseudomorphs of amphibole are known as the uralite.


  • The amphibole formula that is found commonly in the representation of the minerals classified under it is RSi4O11 where R is the specific group present in different minerals.

  • Most common of the minerals among is the amphibole asbestos. Four such minerals are commonly known as amphibole asbestos. Those four are anthophyllite, riebeckite, cummingtonite/grunerite asbestos series and tremolite/actinolite asbestos series. The cummingtonite/grunerite are generally known as brown or amosite asbestos, whereas, the riebeckite mineral is known as blue asbestos. All of these are very commonly known as amphibole asbestos.

Use of Amphibole

The amphibole mineral finds its utility for a variety of purposes. Because of its coloring and the ability to exhibit different colors when being viewed from different angles, one of the most prominent uses of amphibole is in decorations. It can be simply shaped as desirable and then kept in the house as a decorative or interior designing item. Some of the observable uses are as paving stones, and as veneers or facings on the buildings. Another one of the uses of amphibole mineral includes its utility as crushed stone for activities such as road construction and railroad bed construction. This is vastly done near the sites where amphobiles are a common occurrence.

General contemplations

Amphiboles are tracked down chiefly in transformative and volcanic rocks; they happen in numerous transformative rocks, particularly those obtained from mafic volcanic rocks (those containing dim hued ferromagnesian minerals) and siliceous dolomites. Amphiboles likewise are significant constituents in an assortment of plutonic and volcanic molten rocks that reach in arrangement from granitic to gabbroic. Amphibole, from the Greek amphibolos, signifying "equivocal," was named by the popular French crystallographer and mineralogist René-Just Haüy (1801) in reference to the extraordinary assortment of creation and appearance shown by this mineral gathering. There are 5 significant gatherings of amphibole prompting 76 synthetically characterized end-part amphibole pieces as per the British mineralogist Bernard E. Leake. As a result of the wide scope of synthetic replacements allowable in the precious stone design, amphiboles can solidify in volcanic and transformative rocks with a wide scope of mass sciences. Normally amphiboles structure as long kaleidoscopic gems, emanating splashes, and asbestiform (sinewy) totals; in any case, without the guide of compound investigation, it is hard to megascopically distinguish everything except a couple of the more unmistakable end-part amphiboles. The mix of kaleidoscopic structure and two precious stone-formed headings of cleavage at around 56° and 124° is the demonstrative component of most individuals from the amphibole bunch.

Compound structure

The perplexing compound piece of individuals from the amphibole gathering can be communicated by the overall recipe A0–1B2C5T8O22(OH, F, Cl)2, where A = Na, K; B = Na, Zn, Li, Ca, Mn, Fe2+, Mg; C = Mg, Fe2+, Mn, Al, Fe3+, Ti, Zn, Cr; and T = Si, Al, Ti. Almost complete replacement might occur among sodium and calcium and among magnesium, ferrous iron, and manganese (Mn). There is restricted replacement between ferric iron and aluminum and among titanium and other C-type cations. Aluminum can to some extent substitute for silicon in the tetrahedral (T) site. Halfway replacement of fluorine (F), chlorine, and oxygen for hydroxyl (OH) in the hydroxyl site is additionally normal. The intricacy of the amphibole equation has led to various mineral names inside the amphibole bunch. In 1997 Leake introduced an exact classification of 76 names that include the compound variety inside this gathering. The mineral classification of the amphiboles is partitioned into four head regions dependent on B-bunch cation inhabitants:

(1) The iron-magnesium-manganese amphibole bunch,

(2) The calcic amphibole bunch,

(3) The sodic-calcic amphibole bunch,

(4) The sodic amphibole bunch.

Actual properties

Long kaleidoscopic, acicular, or sinewy gem propensity, Mohs hardness somewhere in the range of 5 and 6, and two bearings of cleavage converging at around 56° and 124° for the most part do the trick to recognize amphiboles close by examples. The particular gravity upsides of amphiboles range from around 2.9 to 3.6. Amphiboles yield water when warmed in a shut cylinder and wire with trouble in a fire. Their shading goes widely from dry to white, green, brown, dark, blue, or lavender and is connected with the arrangement, primarily the iron substance. Magnesium-rich amphiboles like anthophyllite, cummingtonite, and tremolite are luster or light in shading. The tremolite-ferro actinolite series goes from white to dull green with expanding iron substance. The finely stringy and enormous assortment of actinolite-tremolite known as nephrite jade reaches from green to dark. Normal hornblende is ordinarily dark. Glaucophane and riebeckite are typically blue. Anthophyllite is dim to different shades of green and brown. The cummingtonite-grunerite series happens in different shades of light brown. Sans iron assortments of tremolite containing manganese can have a lavender tone.

FAQs (Frequently Asked Questions)

1. What is Amphibole Used For?

There are distinct purposes that amphiboles are used for. Due to their unique property of appearing of a different colour when looking at it from a different angle and also the prismatic configuration of the amphibole crystal makes it an interesting decorative item for interior designing. Also, it is used as paving stones and as a veneer or facings on the building either internal or external. It is also used for crushed stone applications such as during the construction of a road or a railway bed, whenever such construction is taking place near a site where an amphibole mineral is commonly found.

2. How Do You Identify Amphiboles?

Amphiboles are crystals that are classified under the ino-silicate mineral category. They contain a double chain of silica tetrahedra which are linked through the vertices of the tetrahedra of each unit in each chain. This leads to the unique crystallisation of the minerals resulting in a prismatic or needle-like crystal structure. Additionally, they occur in different colours, such as green, blue, yellow, black, and may even be colourless. So, any of the long prismatic, acicular, or fibrous crystals having two directions of cleavage with an approximation of  56° - 124° are sufficient enough to identify the amphibole specimens.