What is Solvolysis Reaction?

There are numerous reactions involved in chemistry, one of the most commonly used reactions is solvolysis. Let us discuss in detail, what is a solvolysis reaction? A nucleophilic substitution or elimination reaction is solvolysis. The nucleophile in this reaction is a solvent molecule. Solvolysis of a chiral reactant yields the racemate, which is typical of SN1 reactions. Intimate ion pairs, in which the leaving anion remains near to the carbocation, effectively shielding it from attack by the nucleophile, may complicate the stereochemical path. Neighbor group involvement may result in particularly quick reactions, with nonclassical ions acting as intermediates or transition states.

Solvolysis reactions are classified for specific nucleophiles. Hydrolysis is a form of solvolysis that involves water. Alcoholysis (alcohols) and, more precisely, methanolysis (methanol), acetolysis, ammonolysis (ammonia), and aminolysis are concepts that are related (alkyl amines). Glycolysis, on the other hand, is an older term for the multistep process of converting glucose to pyruvate.

Common Examples of Solvolysis are Discussed Below:


Although solvolysis is most commonly associated with organic chemistry, hydrolysis occurs in inorganic chemistry when metal ion aqua complexes react with solvent molecules due to the Lewis acidity of the metal core. Aqueous aluminium chloride solutions, for example, are acidic since the aqua-aluminium complex loses protons to water molecules, resulting in hydronium ions, which reduces the pH.

Hydrolysis reactions in organic chemistry often yield two fragments from an initial substrate. Amide hydrolysis yields carboxylic acids and amines, while ester hydrolysis yields alcohols and carboxylic acids.


The reaction of a triglyceride with a simple alcohol such as methanol or ethanol to produce the fatty acid's methyl or ethyl esters, as well as glycerol, is an example of solvolysis. Because of the exchange of alcohol fragments, this reaction is more generally known as a transesterification reaction.


Ammonolysis is a term that refers to ammonia solvolysis, but it may also refer to ammonia's nucleophilic assault in general. Since ammonia boils at 33 degrees Celsius, it is rarely used as a solvent in its pure state. However, it is easily miscible with water and is often used as a saturated aqueous solution. As a result, ammonolysis can be thought of as a subset of solvolysis, since the ammonia is dissolved in a solvent. Despite this, since ammonia has a higher nucleophilicity than water, the reactions are normally very selective.

Hydrolysis of Alkyl Halides (Tertiary and secondary Haloalkanes)

Hydrolysis of alkyl halides is a nucleophilic substitution reaction by a solvolysis mechanism. The nucleophile, solvent, and leaving group all impact SN1 (Unimolecular Nucleophilic Substitution) reactions, just as they do with nucleophilic substitution reaction two (SN2). The hydrogen atom is strongly polarised in polar protic solvents since it is bound to an electronegative atom. A dipole moment exists in polar aprotic solvents, but their hydrogen is not strongly polarised. Since certain polar aprotic solvents can react with the carbocation intermediate and produce an undesirable product, they are not used in SN1 reactions. Polar protic solvents are favoured instead.

Since the hydrogen atom in a polar protic solvent is highly positively charged, it can interact with the anionic nucleophile in an SN2 reaction, but not in an SN1 reaction because the nucleophile is not a rate-determining phase. Since the broad dipole moment of the solvent helps to stabilise the transition state, polar protic solvents actually speed up the rate of the unimolecular substitution reaction. The substrate interacts with the highly positive and highly negative sections to lower the energy of the transition state. Since the carbocation is unstable, anything that can even slightly stabilise it will speed up the reaction.

The solvent can often serve as the nucleophile in an SN1 reaction. A solvolysis reaction is what this is called. The polarity of the solvent and its ability to stabilise the intermediate carbocation are critical for solvolysis rate. The dielectric constant of a solvent approximates the polarity of the solvent. Non-polar materials have a dielectric constant less than 15. The dielectric constant can be thought of as the tendency of a solvent to decrease its internal charge. For our purposes, the higher the dielectric constant, the more polar the material, and the faster the rate of SN1 reactions.

[Image will be Uploaded Soon]

Mechanism of Solvolysis Reaction

[Image will be Uploaded Soon]

In solvolysis reactions, generally the solvent is nucleophile. The solvolysis reaction of SN1 type occurs in three steps. These steps are:

  • Formation of carbocation

  • Attack of nucleophile

  • Stable compound formation

Formation of Carbocation

The bond between carbon and bromine is a polar covalent bond. The cleavage of this bond allows the leaving group to be removed (bromide ion in above shown example). A carbocation intermediate is formed when the bromide ion leaves the tertiary butyl bromide. The SN1 solvolysis mechanism's rate-determining step is this one. It's important to remember that breaking the carbon-bromine bond is an endothermic reaction.

Attack of Nucleophile

The nucleophile attacks the carbocation in the second step of the SN1 reaction process.

Since the solvent is neutral, a third step involving deprotonation is needed.

Stable Compound Formation

In the previous step, the positive charge on the carbocation was transferred to the oxygen. The water solvent now acts as a foundation, deprotonating the intermediate produced in the reaction to produce the desired alcohol as well as a hydronium ion as a product. As a result, the produced hydronium ion interacts with the bromide ion to produce hydrogen bromide as a component. This reaction's steps 2 and 3 are fast.

Nucleophilic Effect on Solvolysis

Since the nucleophile is not involved in the rate-determining step, the strength of the nucleophile has no effect on the reaction rate of SN1 type of solvolysis reaction. When more than one nucleophile competes for a bond with the carbocation, the strengths and concentrations of those nucleophiles influence the distribution of products generated. When tertiary alkyl halide reacts with water and formic acid, where the water and formic acid are competing nucleophiles, two separate products are formed. The relative yields of these products are determined by the nucleophile concentrations and reactivities.

With a strong leaving group, an SN1 reaction accelerates. Since the leaving group is involved in the rate-determining step, this is the case. Since a successful leaving group needs to leave, the C-Leaving Group bond is broken faster. The carbocation is formed as the bond breaks, and the faster the carbocation is formed, the faster the nucleophile can enter and the reaction will be completed.

Since weak bases can carry the charge, a strong leaving group is a weak base. They're ready to go with all electrons, and the leaving group must be able to accept electrons in order to leave. Strong bases, on the other hand, donate electrons, making them ineffective as leaving groups. The ability to donate electrons decreases when you move from left to right on the periodic table, while the ability to be a strong leaving party increases. Halides is an example of a successful leaving community whose willingness to leave grows as you progress down the column.

In SN2 solvolysis reactions, the nucleophile is involved in the rate-determining process. As a result, stronger nucleophiles react more quickly. Nucleophilicity is said to be higher in stronger nucleophiles. While there are several exceptions to this pattern in solution, there is a connection between increased relative nucleophilicity and increased base strength in the gas phase. Nucleophilicity rises from right to left around the periodic table in general. Furthermore, an anion is a stronger nucleophile than a neutral species for different reagents of the same nucleophilic atom.

Did You Know?

  • The dielectric constant of the substance or chemical affects the rate of solvolysis.

  • The rate of solvolysis depends on the stability of the intermediate formed in the reaction.

FAQs (Frequently Asked Questions)

Question1: What is Solvolysis?

Answer: Solvolysis is a chemical reaction in which the solvent, such as water or alcohol, is one of the reagents and is present in much greater amounts than is needed. Substitution reactions are the most common form of solvolytic reaction. An atom or a group of atoms in a molecule is substituted by another atom or group of atoms in a reaction. The solvents displace an atom or group in the substrate molecule by acting as or producing electron-rich atoms or groups of atoms (nucleophiles). Some solvents act as eliminating agents, converting alkyl halides to alkenes at high temperatures or in the presence of strong bases. Solvolysis reactions are sometimes named after the reagent, such as "hydrolysis" when the reagent is water.

Question2: Give Some Examples of Solvolysis.

Answer: Some of the examples of solvolysis are: hydrolysis, alcoholysis, and ammonolysis.