
With what minimum acceleration can a fireman slide down a rope whose breaking strength is two third of his weight?
A) $\dfrac{g}{2}$
B) $\dfrac{2g}{3}$
C) $\dfrac{3g}{2}$
D) $\dfrac{g}{3}$
Answer
232.8k+ views
Hint: Breaking strength of a rope is nothing but a tension in a rope. Now use Newton’s second law of motion to form a relation and find the minimum acceleration.
Formula Used:
$F$ = $ma$
Complete step by step answer:
We have been given a rope whose breaking strength is two third of the foreman who is sliding down on it , therefore we can say that the rope has a tension of two third of a weight of a foreman in upwards direction.
Now let m be the mass of a foreman
Thus we have W = mg (downward direction), T = $\dfrac{2}{3}mg$ (upwards direction)
Where W is weight of a foreman and T is a tension
Now applying Newton’s Second Law of Motion on a foreman sliding downwards
F = ma
F is here is T – W (net force)
Substituting this in the above formula we get
$
\dfrac{2}{3}mg - mg = ma \\
\\
$
Cancelling out m and solving LHS we get
$a = - \dfrac{g}{3}$
Therefore the minimum acceleration is $\dfrac{g}{3}$ in the downwards direction.
Since only magnitude is given in the options we can say option D is the correct answer.
Note: It is important to understand the concept of plus and minus signs in force related problems. These signs denote nothing but the direction of application of force. It is also important to know about Newton's Laws to solve these types of problems.
Formula Used:
$F$ = $ma$
Complete step by step answer:
We have been given a rope whose breaking strength is two third of the foreman who is sliding down on it , therefore we can say that the rope has a tension of two third of a weight of a foreman in upwards direction.
Now let m be the mass of a foreman
Thus we have W = mg (downward direction), T = $\dfrac{2}{3}mg$ (upwards direction)
Where W is weight of a foreman and T is a tension
Now applying Newton’s Second Law of Motion on a foreman sliding downwards
F = ma
F is here is T – W (net force)
Substituting this in the above formula we get
$
\dfrac{2}{3}mg - mg = ma \\
\\
$
Cancelling out m and solving LHS we get
$a = - \dfrac{g}{3}$
Therefore the minimum acceleration is $\dfrac{g}{3}$ in the downwards direction.
Since only magnitude is given in the options we can say option D is the correct answer.
Note: It is important to understand the concept of plus and minus signs in force related problems. These signs denote nothing but the direction of application of force. It is also important to know about Newton's Laws to solve these types of problems.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

