Which of the following function(s) is differentiable at x = 0?
(a) \[\cos \left( \left| x \right| \right)+\left| x \right|\]
(b) \[\cos \left( \left| x \right| \right)-\left| x \right|\]
(c) \[\sin \left( \left| x \right| \right)+\left| x \right|\]
(d) \[\sin \left( \left| x \right| \right)-\left| x \right|\]
Answer
386.1k+ views
Hint: Differentiate the given function and check \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\]= finite quantity for differentiability at x = 0.
Here we have to check if the function given is differentiable at x = 0 or not.
We know that for the function to be differentiable at x = 0, it must satisfy \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\]= finite quantity\[....\left( i \right)\]
We know that \[\left| x \right|=x\text{ for }x\ge 0....\left( ii \right)\]
And, \[\left| x \right|=-x\text{ for }x<0....\left( iii \right)\]
Taking \[f\left( x \right)=\cos \left( \left| x \right| \right)+\left| x \right|\]
By equation (ii) and (iii)
\[f\left( x \right)=\left\{ \begin{align}
& \cos \left( x \right)+x,\text{ }x\ge 0 \\
& \cos \left( -x \right)-x,\text{ }x<0 \\
\end{align} \right.\]
As we know that \[\cos \left( -x \right)=\cos x\]
We get, \[f\left( x \right)=\left\{ \begin{align}
& \cos x+x,\text{ }x\ge 0 \\
& \cos x-x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[f\left( x \right)\]
Since, we know that \[\dfrac{d}{dx}\left( \cos x \right)=-\sin x\]and \[\dfrac{d}{dx}\left( x \right)=1\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& -\sin x+1\text{, }x>0 \\
& -\sin x-1,\text{ x0} \\
\end{align} \right.\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\sin x-1 \right)=-\sin \left( {{0}^{o}} \right)-1\] [Since \[\sin \left( {{0}^{o}} \right)=0\]]
We get \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=-1\]
Now, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( -\sin x+1 \right)=-\sin \left( {{0}^{o}} \right)+1=1\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\]
Therefore, \[f\left( x \right)=\cos \left( \left| x \right| \right)+\left| x \right|\]is not differentiable at x = 0.
Now taking \[g\left( x \right)=\cos \left( \left| x \right| \right)-\left| x \right|\]
By equation (ii) and (iii)
We get, \[g\left( x \right)=\left\{ \begin{align}
& cos x-x,\text{ }x\ge 0 \\
& \cos x+x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[g\left( x \right)\].
We get, \[{{g}^{'}}\left( x \right)=\left\{ \begin{align}
& -\sin x-1,\text{ }x>0 \\
& -\sin x+1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\sin \left( {{0}^{o}} \right)\text{=0 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\sin x+1 \right)=-\sin \left( {{0}^{o}} \right)+1=1\]
And \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( -\sin x-1 \right)=-\sin \left( {{0}^{o}} \right)-1=-1\]
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)\]
Therefore, \[g\left( x \right)=\cos \left( \left| x \right| \right)-\left| x \right|\]is not differentiable at x = 0.
Now, taking \[h\left( x \right)=\sin \left( \left| x \right| \right)+\left| x \right|\]
By equation (ii) and (iii),
We get \[h\left( x \right)=\left\{ \begin{align}
& \sin x+x,\text{ }x\ge 0 \\
& \sin \left( -x \right)-x,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Since }\sin \left( -x \right)\text{=}-\sin x\text{ }\!\!]\!\!\text{ }\]
\[h\left( x \right)=\left\{ \begin{align}
& \sin x+x,\text{ }x\ge 0 \\
& -\sin x-x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[h\left( x \right)\].
Since, \[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]
We get, \[{{h}^{'}}\left( x \right)=\left\{ \begin{align}
& \cos x+1,\text{ }x>0 \\
& -\cos x-1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\cos \left( {{0}^{o}} \right)\text{=1 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\cos x-1 \right)=-\cos \left( {{0}^{o}} \right)-1=-1-1=-2\]
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \cos x+1 \right)=\cos \left( {{0}^{o}} \right)+1=1+1=2\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)\]
Therefore, \[h\left( x \right)=\sin \left( \left| x \right| \right)+\left| x \right|\]is not differentiable at x = 0.
Now, taking \[J\left( x \right)=\sin \left( \left| x \right| \right)-\left| x \right|\]
By equation (ii) and (iii),
We get \[J\left( x \right)=\left\{ \begin{align}
& \sin x-x,\text{ }x\ge 0 \\
& \sin \left( -x \right)+x,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Since }\sin \left( -x \right)\text{=}-\sin x\text{ }\!\!]\!\!\text{ }\]
\[J\left( x \right)=\left\{ \begin{align}
& \sin x-x,\text{ }x\ge 0 \\
& -\sin x+x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[J\left( x \right)\].
Since, \[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]
We get, \[{{J}^{'}}\left( x \right)=\left\{ \begin{align}
& \cos x-1,\text{ }x>0 \\
& -\cos x+1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\cos \left( {{0}^{o}} \right)\text{=1 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \cos x-1 \right)=\cos \left( {{0}^{o}} \right)-1=1-1=0\]
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\cos x+1 \right)=-\cos \left( {{0}^{o}} \right)+1=-1+1=0\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)\]
Therefore, J(x) is differentiable at x = 0.
Hence, option (d) is correct.
Note: Some students check the continuity first in these types of questions but that is not required. It makes the solution time consuming, because if a function is differentiable, it would surely be continuous as well and need not be checked.
Here we have to check if the function given is differentiable at x = 0 or not.
We know that for the function to be differentiable at x = 0, it must satisfy \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\]= finite quantity\[....\left( i \right)\]
We know that \[\left| x \right|=x\text{ for }x\ge 0....\left( ii \right)\]
And, \[\left| x \right|=-x\text{ for }x<0....\left( iii \right)\]
Taking \[f\left( x \right)=\cos \left( \left| x \right| \right)+\left| x \right|\]
By equation (ii) and (iii)
\[f\left( x \right)=\left\{ \begin{align}
& \cos \left( x \right)+x,\text{ }x\ge 0 \\
& \cos \left( -x \right)-x,\text{ }x<0 \\
\end{align} \right.\]
As we know that \[\cos \left( -x \right)=\cos x\]
We get, \[f\left( x \right)=\left\{ \begin{align}
& \cos x+x,\text{ }x\ge 0 \\
& \cos x-x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[f\left( x \right)\]
Since, we know that \[\dfrac{d}{dx}\left( \cos x \right)=-\sin x\]and \[\dfrac{d}{dx}\left( x \right)=1\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& -\sin x+1\text{, }x>0 \\
& -\sin x-1,\text{ x0} \\
\end{align} \right.\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\sin x-1 \right)=-\sin \left( {{0}^{o}} \right)-1\] [Since \[\sin \left( {{0}^{o}} \right)=0\]]
We get \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=-1\]
Now, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( -\sin x+1 \right)=-\sin \left( {{0}^{o}} \right)+1=1\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\]
Therefore, \[f\left( x \right)=\cos \left( \left| x \right| \right)+\left| x \right|\]is not differentiable at x = 0.
Now taking \[g\left( x \right)=\cos \left( \left| x \right| \right)-\left| x \right|\]
By equation (ii) and (iii)
We get, \[g\left( x \right)=\left\{ \begin{align}
& cos x-x,\text{ }x\ge 0 \\
& \cos x+x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[g\left( x \right)\].
We get, \[{{g}^{'}}\left( x \right)=\left\{ \begin{align}
& -\sin x-1,\text{ }x>0 \\
& -\sin x+1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\sin \left( {{0}^{o}} \right)\text{=0 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\sin x+1 \right)=-\sin \left( {{0}^{o}} \right)+1=1\]
And \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( -\sin x-1 \right)=-\sin \left( {{0}^{o}} \right)-1=-1\]
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)\]
Therefore, \[g\left( x \right)=\cos \left( \left| x \right| \right)-\left| x \right|\]is not differentiable at x = 0.
Now, taking \[h\left( x \right)=\sin \left( \left| x \right| \right)+\left| x \right|\]
By equation (ii) and (iii),
We get \[h\left( x \right)=\left\{ \begin{align}
& \sin x+x,\text{ }x\ge 0 \\
& \sin \left( -x \right)-x,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Since }\sin \left( -x \right)\text{=}-\sin x\text{ }\!\!]\!\!\text{ }\]
\[h\left( x \right)=\left\{ \begin{align}
& \sin x+x,\text{ }x\ge 0 \\
& -\sin x-x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[h\left( x \right)\].
Since, \[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]
We get, \[{{h}^{'}}\left( x \right)=\left\{ \begin{align}
& \cos x+1,\text{ }x>0 \\
& -\cos x-1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\cos \left( {{0}^{o}} \right)\text{=1 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\cos x-1 \right)=-\cos \left( {{0}^{o}} \right)-1=-1-1=-2\]
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \cos x+1 \right)=\cos \left( {{0}^{o}} \right)+1=1+1=2\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)\]
Therefore, \[h\left( x \right)=\sin \left( \left| x \right| \right)+\left| x \right|\]is not differentiable at x = 0.
Now, taking \[J\left( x \right)=\sin \left( \left| x \right| \right)-\left| x \right|\]
By equation (ii) and (iii),
We get \[J\left( x \right)=\left\{ \begin{align}
& \sin x-x,\text{ }x\ge 0 \\
& \sin \left( -x \right)+x,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Since }\sin \left( -x \right)\text{=}-\sin x\text{ }\!\!]\!\!\text{ }\]
\[J\left( x \right)=\left\{ \begin{align}
& \sin x-x,\text{ }x\ge 0 \\
& -\sin x+x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[J\left( x \right)\].
Since, \[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]
We get, \[{{J}^{'}}\left( x \right)=\left\{ \begin{align}
& \cos x-1,\text{ }x>0 \\
& -\cos x+1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\cos \left( {{0}^{o}} \right)\text{=1 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \cos x-1 \right)=\cos \left( {{0}^{o}} \right)-1=1-1=0\]
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\cos x+1 \right)=-\cos \left( {{0}^{o}} \right)+1=-1+1=0\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)\]
Therefore, J(x) is differentiable at x = 0.
Hence, option (d) is correct.
Note: Some students check the continuity first in these types of questions but that is not required. It makes the solution time consuming, because if a function is differentiable, it would surely be continuous as well and need not be checked.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is 1 divided by 0 class 8 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Convert compound sentence to simple sentence He is class 10 english CBSE

India lies between latitudes and longitudes class 12 social science CBSE

Why are rivers important for the countrys economy class 12 social science CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE
