
Which of the following function(s) is differentiable at x = 0?
(a) \[\cos \left( \left| x \right| \right)+\left| x \right|\]
(b) \[\cos \left( \left| x \right| \right)-\left| x \right|\]
(c) \[\sin \left( \left| x \right| \right)+\left| x \right|\]
(d) \[\sin \left( \left| x \right| \right)-\left| x \right|\]
Answer
622.5k+ views
Hint: Differentiate the given function and check \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\]= finite quantity for differentiability at x = 0.
Here we have to check if the function given is differentiable at x = 0 or not.
We know that for the function to be differentiable at x = 0, it must satisfy \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\]= finite quantity\[....\left( i \right)\]
We know that \[\left| x \right|=x\text{ for }x\ge 0....\left( ii \right)\]
And, \[\left| x \right|=-x\text{ for }x<0....\left( iii \right)\]
Taking \[f\left( x \right)=\cos \left( \left| x \right| \right)+\left| x \right|\]
By equation (ii) and (iii)
\[f\left( x \right)=\left\{ \begin{align}
& \cos \left( x \right)+x,\text{ }x\ge 0 \\
& \cos \left( -x \right)-x,\text{ }x<0 \\
\end{align} \right.\]
As we know that \[\cos \left( -x \right)=\cos x\]
We get, \[f\left( x \right)=\left\{ \begin{align}
& \cos x+x,\text{ }x\ge 0 \\
& \cos x-x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[f\left( x \right)\]
Since, we know that \[\dfrac{d}{dx}\left( \cos x \right)=-\sin x\]and \[\dfrac{d}{dx}\left( x \right)=1\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& -\sin x+1\text{, }x>0 \\
& -\sin x-1,\text{ x0} \\
\end{align} \right.\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\sin x-1 \right)=-\sin \left( {{0}^{o}} \right)-1\] [Since \[\sin \left( {{0}^{o}} \right)=0\]]
We get \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=-1\]
Now, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( -\sin x+1 \right)=-\sin \left( {{0}^{o}} \right)+1=1\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\]
Therefore, \[f\left( x \right)=\cos \left( \left| x \right| \right)+\left| x \right|\]is not differentiable at x = 0.
Now taking \[g\left( x \right)=\cos \left( \left| x \right| \right)-\left| x \right|\]
By equation (ii) and (iii)
We get, \[g\left( x \right)=\left\{ \begin{align}
& cos x-x,\text{ }x\ge 0 \\
& \cos x+x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[g\left( x \right)\].
We get, \[{{g}^{'}}\left( x \right)=\left\{ \begin{align}
& -\sin x-1,\text{ }x>0 \\
& -\sin x+1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\sin \left( {{0}^{o}} \right)\text{=0 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\sin x+1 \right)=-\sin \left( {{0}^{o}} \right)+1=1\]
And \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( -\sin x-1 \right)=-\sin \left( {{0}^{o}} \right)-1=-1\]
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)\]
Therefore, \[g\left( x \right)=\cos \left( \left| x \right| \right)-\left| x \right|\]is not differentiable at x = 0.
Now, taking \[h\left( x \right)=\sin \left( \left| x \right| \right)+\left| x \right|\]
By equation (ii) and (iii),
We get \[h\left( x \right)=\left\{ \begin{align}
& \sin x+x,\text{ }x\ge 0 \\
& \sin \left( -x \right)-x,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Since }\sin \left( -x \right)\text{=}-\sin x\text{ }\!\!]\!\!\text{ }\]
\[h\left( x \right)=\left\{ \begin{align}
& \sin x+x,\text{ }x\ge 0 \\
& -\sin x-x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[h\left( x \right)\].
Since, \[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]
We get, \[{{h}^{'}}\left( x \right)=\left\{ \begin{align}
& \cos x+1,\text{ }x>0 \\
& -\cos x-1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\cos \left( {{0}^{o}} \right)\text{=1 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\cos x-1 \right)=-\cos \left( {{0}^{o}} \right)-1=-1-1=-2\]
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \cos x+1 \right)=\cos \left( {{0}^{o}} \right)+1=1+1=2\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)\]
Therefore, \[h\left( x \right)=\sin \left( \left| x \right| \right)+\left| x \right|\]is not differentiable at x = 0.
Now, taking \[J\left( x \right)=\sin \left( \left| x \right| \right)-\left| x \right|\]
By equation (ii) and (iii),
We get \[J\left( x \right)=\left\{ \begin{align}
& \sin x-x,\text{ }x\ge 0 \\
& \sin \left( -x \right)+x,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Since }\sin \left( -x \right)\text{=}-\sin x\text{ }\!\!]\!\!\text{ }\]
\[J\left( x \right)=\left\{ \begin{align}
& \sin x-x,\text{ }x\ge 0 \\
& -\sin x+x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[J\left( x \right)\].
Since, \[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]
We get, \[{{J}^{'}}\left( x \right)=\left\{ \begin{align}
& \cos x-1,\text{ }x>0 \\
& -\cos x+1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\cos \left( {{0}^{o}} \right)\text{=1 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \cos x-1 \right)=\cos \left( {{0}^{o}} \right)-1=1-1=0\]
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\cos x+1 \right)=-\cos \left( {{0}^{o}} \right)+1=-1+1=0\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)\]
Therefore, J(x) is differentiable at x = 0.
Hence, option (d) is correct.
Note: Some students check the continuity first in these types of questions but that is not required. It makes the solution time consuming, because if a function is differentiable, it would surely be continuous as well and need not be checked.
Here we have to check if the function given is differentiable at x = 0 or not.
We know that for the function to be differentiable at x = 0, it must satisfy \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\]= finite quantity\[....\left( i \right)\]
We know that \[\left| x \right|=x\text{ for }x\ge 0....\left( ii \right)\]
And, \[\left| x \right|=-x\text{ for }x<0....\left( iii \right)\]
Taking \[f\left( x \right)=\cos \left( \left| x \right| \right)+\left| x \right|\]
By equation (ii) and (iii)
\[f\left( x \right)=\left\{ \begin{align}
& \cos \left( x \right)+x,\text{ }x\ge 0 \\
& \cos \left( -x \right)-x,\text{ }x<0 \\
\end{align} \right.\]
As we know that \[\cos \left( -x \right)=\cos x\]
We get, \[f\left( x \right)=\left\{ \begin{align}
& \cos x+x,\text{ }x\ge 0 \\
& \cos x-x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[f\left( x \right)\]
Since, we know that \[\dfrac{d}{dx}\left( \cos x \right)=-\sin x\]and \[\dfrac{d}{dx}\left( x \right)=1\]
We get, \[{{f}^{'}}\left( x \right)=\left\{ \begin{align}
& -\sin x+1\text{, }x>0 \\
& -\sin x-1,\text{ x0} \\
\end{align} \right.\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\sin x-1 \right)=-\sin \left( {{0}^{o}} \right)-1\] [Since \[\sin \left( {{0}^{o}} \right)=0\]]
We get \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=-1\]
Now, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( -\sin x+1 \right)=-\sin \left( {{0}^{o}} \right)+1=1\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{f}^{'}}\left( x \right)\]
Therefore, \[f\left( x \right)=\cos \left( \left| x \right| \right)+\left| x \right|\]is not differentiable at x = 0.
Now taking \[g\left( x \right)=\cos \left( \left| x \right| \right)-\left| x \right|\]
By equation (ii) and (iii)
We get, \[g\left( x \right)=\left\{ \begin{align}
& cos x-x,\text{ }x\ge 0 \\
& \cos x+x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[g\left( x \right)\].
We get, \[{{g}^{'}}\left( x \right)=\left\{ \begin{align}
& -\sin x-1,\text{ }x>0 \\
& -\sin x+1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\sin \left( {{0}^{o}} \right)\text{=0 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\sin x+1 \right)=-\sin \left( {{0}^{o}} \right)+1=1\]
And \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( -\sin x-1 \right)=-\sin \left( {{0}^{o}} \right)-1=-1\]
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{g}^{'}}\left( x \right)\]
Therefore, \[g\left( x \right)=\cos \left( \left| x \right| \right)-\left| x \right|\]is not differentiable at x = 0.
Now, taking \[h\left( x \right)=\sin \left( \left| x \right| \right)+\left| x \right|\]
By equation (ii) and (iii),
We get \[h\left( x \right)=\left\{ \begin{align}
& \sin x+x,\text{ }x\ge 0 \\
& \sin \left( -x \right)-x,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Since }\sin \left( -x \right)\text{=}-\sin x\text{ }\!\!]\!\!\text{ }\]
\[h\left( x \right)=\left\{ \begin{align}
& \sin x+x,\text{ }x\ge 0 \\
& -\sin x-x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[h\left( x \right)\].
Since, \[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]
We get, \[{{h}^{'}}\left( x \right)=\left\{ \begin{align}
& \cos x+1,\text{ }x>0 \\
& -\cos x-1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\cos \left( {{0}^{o}} \right)\text{=1 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\cos x-1 \right)=-\cos \left( {{0}^{o}} \right)-1=-1-1=-2\]
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \cos x+1 \right)=\cos \left( {{0}^{o}} \right)+1=1+1=2\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)\ne \underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{h}^{'}}\left( x \right)\]
Therefore, \[h\left( x \right)=\sin \left( \left| x \right| \right)+\left| x \right|\]is not differentiable at x = 0.
Now, taking \[J\left( x \right)=\sin \left( \left| x \right| \right)-\left| x \right|\]
By equation (ii) and (iii),
We get \[J\left( x \right)=\left\{ \begin{align}
& \sin x-x,\text{ }x\ge 0 \\
& \sin \left( -x \right)+x,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Since }\sin \left( -x \right)\text{=}-\sin x\text{ }\!\!]\!\!\text{ }\]
\[J\left( x \right)=\left\{ \begin{align}
& \sin x-x,\text{ }x\ge 0 \\
& -\sin x+x,\text{ }x<0 \\
\end{align} \right.\]
Now, we will differentiate \[J\left( x \right)\].
Since, \[\dfrac{d}{dx}\left( \sin x \right)=\cos x\]
We get, \[{{J}^{'}}\left( x \right)=\left\{ \begin{align}
& \cos x-1,\text{ }x>0 \\
& -\cos x+1,\text{ }x<0 \\
\end{align} \right.\text{ }\!\![\!\!\text{ Also }\cos \left( {{0}^{o}} \right)\text{=1 }\!\!]\!\!\text{ }\]
Now, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,\left( \cos x-1 \right)=\cos \left( {{0}^{o}} \right)-1=1-1=0\]
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,\left( -\cos x+1 \right)=-\cos \left( {{0}^{o}} \right)+1=-1+1=0\]
Since, \[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,{{J}^{'}}\left( x \right)\]
Therefore, J(x) is differentiable at x = 0.
Hence, option (d) is correct.
Note: Some students check the continuity first in these types of questions but that is not required. It makes the solution time consuming, because if a function is differentiable, it would surely be continuous as well and need not be checked.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

